YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of an Intense Squall Line during 10–11 June 1985 PRE-STORM. Part II: Rear Inflow, Surface Pressure Perturbations and Stratiform Precipitation

    Source: Monthly Weather Review:;1989:;volume( 117 ):;issue: 009::page 2067
    Author:
    Zhang, Da-Lin
    ,
    Gao, Kun
    DOI: 10.1175/1520-0493(1989)117<2067:NSOAIS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: An intense rear-inflow jet, surface pressure perturbations, and stratiform precipitation associated with a squall line during 10?11 June 1985 are examined using a three-dimensional mesoscale nested-grid model. It is found that the large-scale baroclinity provides favorable and deep rear-to-front flow within the upper half of the troposphere and the mesoscale response to convective forcing helps enhance the trailing extensive rear inflow. However, latent cooling and water loading are directly responsible for the generation of the descending portion of the rear inflow. The role of the rear inflow is generally to produce convergence ahead and divergence behind the system, and thus assist the rapid acceleration of the leading convection when the prestorm environment is convectively favorable and the rapid dissipation of the convection when encountering unfavorable conditions. In this case study, the rear-inflow jet appears to have caused the splitting of the surface wake low as well as the organized rainfall. As considerable mass within the rear inflow subsides, an intense surface wake low is formed at the back edge of the squall system. This result confirms previous observations that the surface wake low develops hydrostatically as a consequence of adiabatic warming and drying by the descending rear inflow. The wake low is shown to be an end product of complicated reactions involving condensate production, fallout cooling and induced subsiding motion. It does not have any significant effects on the evolution of atmospheric features ahead but contributes to vertical destabilization over the wake region. The simulation shows that the squall line initially leans downshear and later upshear as the low-level cold pool progressively builds up and the system moves into a convectively stable environment. During the mature stage, there are three distinct airflows associated with the squall system: a leading overturning updraft and an ascending front-to-rear (FTR) current that both are driven by high-?e, air from the boundary layer ahead of the line, and an overturning downdraft carrying low-?e, air from the rear. These features resemble previously published results using nonhydrostatic cloud models. Due to continuous deposit of FTR momentum at the upper levels, the FTR updraft is responsible for the rearward transport of high-?e, air mass for the generation of the trailing stratiform precipitation. Several sensitivity experiments are conducted. The generation of the descending rear inflow, and the surface and midlevel pressure perturbations are found to be most sensitive to the parameterized moist downdrafts, hydrostatic water loading, evaporative cooling and ice ice microphysics, in that order. Without any one of these model processes, neither the rear inflow reaches the surface nor the surface mesohigh and wake low become well developed. The results illustrate that the descending rear inflow is a product of the dynamic response to the latent-cooling-induced circulation. Different roles of the parameterized versus grid-resolved downdrafts in the development of the descending rear inflow are also discussed.
    • Download: (2.612Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of an Intense Squall Line during 10–11 June 1985 PRE-STORM. Part II: Rear Inflow, Surface Pressure Perturbations and Stratiform Precipitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4202272
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorZhang, Da-Lin
    contributor authorGao, Kun
    date accessioned2017-06-09T16:07:30Z
    date available2017-06-09T16:07:30Z
    date copyright1989/09/01
    date issued1989
    identifier issn0027-0644
    identifier otherams-61486.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4202272
    description abstractAn intense rear-inflow jet, surface pressure perturbations, and stratiform precipitation associated with a squall line during 10?11 June 1985 are examined using a three-dimensional mesoscale nested-grid model. It is found that the large-scale baroclinity provides favorable and deep rear-to-front flow within the upper half of the troposphere and the mesoscale response to convective forcing helps enhance the trailing extensive rear inflow. However, latent cooling and water loading are directly responsible for the generation of the descending portion of the rear inflow. The role of the rear inflow is generally to produce convergence ahead and divergence behind the system, and thus assist the rapid acceleration of the leading convection when the prestorm environment is convectively favorable and the rapid dissipation of the convection when encountering unfavorable conditions. In this case study, the rear-inflow jet appears to have caused the splitting of the surface wake low as well as the organized rainfall. As considerable mass within the rear inflow subsides, an intense surface wake low is formed at the back edge of the squall system. This result confirms previous observations that the surface wake low develops hydrostatically as a consequence of adiabatic warming and drying by the descending rear inflow. The wake low is shown to be an end product of complicated reactions involving condensate production, fallout cooling and induced subsiding motion. It does not have any significant effects on the evolution of atmospheric features ahead but contributes to vertical destabilization over the wake region. The simulation shows that the squall line initially leans downshear and later upshear as the low-level cold pool progressively builds up and the system moves into a convectively stable environment. During the mature stage, there are three distinct airflows associated with the squall system: a leading overturning updraft and an ascending front-to-rear (FTR) current that both are driven by high-?e, air from the boundary layer ahead of the line, and an overturning downdraft carrying low-?e, air from the rear. These features resemble previously published results using nonhydrostatic cloud models. Due to continuous deposit of FTR momentum at the upper levels, the FTR updraft is responsible for the rearward transport of high-?e, air mass for the generation of the trailing stratiform precipitation. Several sensitivity experiments are conducted. The generation of the descending rear inflow, and the surface and midlevel pressure perturbations are found to be most sensitive to the parameterized moist downdrafts, hydrostatic water loading, evaporative cooling and ice ice microphysics, in that order. Without any one of these model processes, neither the rear inflow reaches the surface nor the surface mesohigh and wake low become well developed. The results illustrate that the descending rear inflow is a product of the dynamic response to the latent-cooling-induced circulation. Different roles of the parameterized versus grid-resolved downdrafts in the development of the descending rear inflow are also discussed.
    publisherAmerican Meteorological Society
    titleNumerical Simulation of an Intense Squall Line during 10–11 June 1985 PRE-STORM. Part II: Rear Inflow, Surface Pressure Perturbations and Stratiform Precipitation
    typeJournal Paper
    journal volume117
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1989)117<2067:NSOAIS>2.0.CO;2
    journal fristpage2067
    journal lastpage2094
    treeMonthly Weather Review:;1989:;volume( 117 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian