YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Energy Analysis of Convectively Induced Wind Perturbations

    Source: Monthly Weather Review:;1989:;volume( 117 ):;issue: 004::page 745
    Author:
    Fuelberg, Henry E.
    ,
    Buechler, Dennis E.
    DOI: 10.1175/1520-0493(1989)117<0745:EAOCIW>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Budgets of divergent and rotational components of kinetic energy (KD and KR) are examined for four upper level wind speed maxima that develop during the fourth Atmospheric Variability Experiment (AVE IV) and the first AVE-Severe Environmental Storms and Mesoscale Experiment (AVE-SESAME I). A similar budget analysis for a low-level jet stream during AVE-SESAME I also is performed. Special radiosonde data at 3 or 6 h intervals and mesoscale horizontal spacing (AVE-SESAME I only) are a major advantage to the cases selected. Previous studies have attributed the development of upper level wind maxima during AVE IV to the presence of mesoscale convective complexes. They appear to be similarly formed, or at least enhanced, during the SESAME case; however, strong preexisting dynamics and less reliable wind data make the determination more difficult. The energetics of the four upper level speed maxima is found to have several similarities. The dominant source of KD is cross-contour flow by the divergent wind, and KD provides a major source of KR via a conversion process. Conversion from available potential energy provides an additional source of KR in three of the cases. Horizontal maps reveal that the conversions involving KD are maximized in regions poleward of the convection, i.e., where the speed maxima form. Low level jet development during AVE-SESAME I appears to be assisted by convective activity to the west. Enhanced low level convergence produces conversion from available potential energy to KD and then to KR. These aspects are similar to those occurring in the upper-level speed maxima.
    • Download: (1.502Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Energy Analysis of Convectively Induced Wind Perturbations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4202182
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorFuelberg, Henry E.
    contributor authorBuechler, Dennis E.
    date accessioned2017-06-09T16:07:17Z
    date available2017-06-09T16:07:17Z
    date copyright1989/04/01
    date issued1989
    identifier issn0027-0644
    identifier otherams-61404.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4202182
    description abstractBudgets of divergent and rotational components of kinetic energy (KD and KR) are examined for four upper level wind speed maxima that develop during the fourth Atmospheric Variability Experiment (AVE IV) and the first AVE-Severe Environmental Storms and Mesoscale Experiment (AVE-SESAME I). A similar budget analysis for a low-level jet stream during AVE-SESAME I also is performed. Special radiosonde data at 3 or 6 h intervals and mesoscale horizontal spacing (AVE-SESAME I only) are a major advantage to the cases selected. Previous studies have attributed the development of upper level wind maxima during AVE IV to the presence of mesoscale convective complexes. They appear to be similarly formed, or at least enhanced, during the SESAME case; however, strong preexisting dynamics and less reliable wind data make the determination more difficult. The energetics of the four upper level speed maxima is found to have several similarities. The dominant source of KD is cross-contour flow by the divergent wind, and KD provides a major source of KR via a conversion process. Conversion from available potential energy provides an additional source of KR in three of the cases. Horizontal maps reveal that the conversions involving KD are maximized in regions poleward of the convection, i.e., where the speed maxima form. Low level jet development during AVE-SESAME I appears to be assisted by convective activity to the west. Enhanced low level convergence produces conversion from available potential energy to KD and then to KR. These aspects are similar to those occurring in the upper-level speed maxima.
    publisherAmerican Meteorological Society
    titleEnergy Analysis of Convectively Induced Wind Perturbations
    typeJournal Paper
    journal volume117
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1989)117<0745:EAOCIW>2.0.CO;2
    journal fristpage745
    journal lastpage764
    treeMonthly Weather Review:;1989:;volume( 117 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian