YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cumulus Parameterization and Rainfall Rates: Part III

    Source: Monthly Weather Review:;1988:;volume( 116 ):;issue: 003::page 583
    Author:
    Krishnamurti, T. N.
    ,
    Bedi, H. S.
    DOI: 10.1175/1520-0493(1988)116<0583:CPARRP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The eastern and the western tropical oceans usually show a considerable zonal asymmetry in the extent and depth of deep cumulus convection. Earlier versions of a simple cumulus parameterization based on GATE observations have revealed some limitations in differentiating this type of zonal asymmetry. The aim of the proposed scheme is to provide global statistical corrections to a Kuo-type cumulus parameterization scheme and thus to optimize the moistening, heating and rainfall rates over different regions. The base data for this study are the recently analyzed global FGGE IIIb datasets. Three months of daily datasets during the global experiment were utilized in order to evaluate the coefficients of a multiple regression analysis. These multiple regression coefficients vary in space and provide different measures of a moistening parameter b and a mesoscale convergence parameter ?. A clear distinction in the strength of convection is found, based on the regression parameters, between the western and the eastern oceans. This generalization of a modified Kuo-type scheme is derived for a spectral resolution of 42 waves. The impact of the aforementioned scheme is investigated in several medium range prediction experiments. Forecast comparison with a simpler version of the Kuo scheme is also carried out. Our interest in these experiments is an evaluation of precipitation forecasts, for which the proposed global cumulus parameterization is compared with other experiments that were based on GATE coefficients and with the observed measures of precipitation. The results of the global forecasts show a very marked improvement in the short range (1 to 2 day) prediction from the use of the globally varying parameterization coefficients. On the other hand, the precipitation amounts predicted from an application of the local GATE coefficients underestimate the rainfall rates over most regions.
    • Download: (1.500Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cumulus Parameterization and Rainfall Rates: Part III

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4201966
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorKrishnamurti, T. N.
    contributor authorBedi, H. S.
    date accessioned2017-06-09T16:06:46Z
    date available2017-06-09T16:06:46Z
    date copyright1988/03/01
    date issued1988
    identifier issn0027-0644
    identifier otherams-61210.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4201966
    description abstractThe eastern and the western tropical oceans usually show a considerable zonal asymmetry in the extent and depth of deep cumulus convection. Earlier versions of a simple cumulus parameterization based on GATE observations have revealed some limitations in differentiating this type of zonal asymmetry. The aim of the proposed scheme is to provide global statistical corrections to a Kuo-type cumulus parameterization scheme and thus to optimize the moistening, heating and rainfall rates over different regions. The base data for this study are the recently analyzed global FGGE IIIb datasets. Three months of daily datasets during the global experiment were utilized in order to evaluate the coefficients of a multiple regression analysis. These multiple regression coefficients vary in space and provide different measures of a moistening parameter b and a mesoscale convergence parameter ?. A clear distinction in the strength of convection is found, based on the regression parameters, between the western and the eastern oceans. This generalization of a modified Kuo-type scheme is derived for a spectral resolution of 42 waves. The impact of the aforementioned scheme is investigated in several medium range prediction experiments. Forecast comparison with a simpler version of the Kuo scheme is also carried out. Our interest in these experiments is an evaluation of precipitation forecasts, for which the proposed global cumulus parameterization is compared with other experiments that were based on GATE coefficients and with the observed measures of precipitation. The results of the global forecasts show a very marked improvement in the short range (1 to 2 day) prediction from the use of the globally varying parameterization coefficients. On the other hand, the precipitation amounts predicted from an application of the local GATE coefficients underestimate the rainfall rates over most regions.
    publisherAmerican Meteorological Society
    titleCumulus Parameterization and Rainfall Rates: Part III
    typeJournal Paper
    journal volume116
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1988)116<0583:CPARRP>2.0.CO;2
    journal fristpage583
    journal lastpage599
    treeMonthly Weather Review:;1988:;volume( 116 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian