YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Scale-Controlled Objective Analysis

    Source: Monthly Weather Review:;1987:;volume( 115 ):;issue: 010::page 2479
    Author:
    Ooyama, Katsuyuki V.
    DOI: 10.1175/1520-0493(1987)115<2479:SCOA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The major topic of this paper is the resolvable spatial scales that can be analyzed by statistical interpolation of an undersampled dataset. The inquiry was motivated by the need to design the most appropriate procedures for spatial analysis of the upper-air sounding data from the GARP Atlantic Tropical Experiment. A reliable representation of horizontal scales in the analyzed wind fields was a matter of utmost concern, since the derived fields of vorticity, divergence and vertical motion were also of vital interest. To achieve our goal, it was found that the traditional promise of statistical interpolation had to be reexamined. The main conclusions of this theoretical inquiry are (i) resolvable scales are determined by the geometrical distribution of observing stations; (ii) precise knowledge of the second-moment statistics improves the analysis by de-aliasing the amplitudes of resolvable scales, but has no effect on the definition of resolvable scales; (iii) residual effects of unresolvable signals in the data are removable by a spatial filter and must be so removed., and (iv) spatial phases of the de-aliased resolvable scales may still be in error. On the basis of these findings the objective analysis procedures we have developed are targeted on the best achievable analysis of resolvable scales. The procedures include the following: an adequate estimation of ?true? statistical fields from the given ensemble of data, a search for the optimum spatial filter by monitoring the targeted error variance, and a rational method of desensitizing the analysis to statistically errant data. In order to reduce the spatial phase error of propagating disturbances, the procedures are extended to the analysis of the timewise Fourier-transformed dataset (actually in the frequency-band analog). Since the wind is a physical vector, the entire procedure for the wind analysis is given in the tensor-invariant form, which is decidedly advantageous for very practical reasons. For example, the tensor approach eliminates the notorious ambiguity in normalization that is encountered in the multivariate approach. The paper also describes, in the Appendix, a method of filtered mechanical interpolation, which is specifically designed, with a variety of optional boundary conditions, for application to analysis in a finite domain.
    • Download: (2.536Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Scale-Controlled Objective Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4201862
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorOoyama, Katsuyuki V.
    date accessioned2017-06-09T16:06:31Z
    date available2017-06-09T16:06:31Z
    date copyright1987/10/01
    date issued1987
    identifier issn0027-0644
    identifier otherams-61116.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4201862
    description abstractThe major topic of this paper is the resolvable spatial scales that can be analyzed by statistical interpolation of an undersampled dataset. The inquiry was motivated by the need to design the most appropriate procedures for spatial analysis of the upper-air sounding data from the GARP Atlantic Tropical Experiment. A reliable representation of horizontal scales in the analyzed wind fields was a matter of utmost concern, since the derived fields of vorticity, divergence and vertical motion were also of vital interest. To achieve our goal, it was found that the traditional promise of statistical interpolation had to be reexamined. The main conclusions of this theoretical inquiry are (i) resolvable scales are determined by the geometrical distribution of observing stations; (ii) precise knowledge of the second-moment statistics improves the analysis by de-aliasing the amplitudes of resolvable scales, but has no effect on the definition of resolvable scales; (iii) residual effects of unresolvable signals in the data are removable by a spatial filter and must be so removed., and (iv) spatial phases of the de-aliased resolvable scales may still be in error. On the basis of these findings the objective analysis procedures we have developed are targeted on the best achievable analysis of resolvable scales. The procedures include the following: an adequate estimation of ?true? statistical fields from the given ensemble of data, a search for the optimum spatial filter by monitoring the targeted error variance, and a rational method of desensitizing the analysis to statistically errant data. In order to reduce the spatial phase error of propagating disturbances, the procedures are extended to the analysis of the timewise Fourier-transformed dataset (actually in the frequency-band analog). Since the wind is a physical vector, the entire procedure for the wind analysis is given in the tensor-invariant form, which is decidedly advantageous for very practical reasons. For example, the tensor approach eliminates the notorious ambiguity in normalization that is encountered in the multivariate approach. The paper also describes, in the Appendix, a method of filtered mechanical interpolation, which is specifically designed, with a variety of optional boundary conditions, for application to analysis in a finite domain.
    publisherAmerican Meteorological Society
    titleScale-Controlled Objective Analysis
    typeJournal Paper
    journal volume115
    journal issue10
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1987)115<2479:SCOA>2.0.CO;2
    journal fristpage2479
    journal lastpage2506
    treeMonthly Weather Review:;1987:;volume( 115 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian