YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Latitude on the Sea Breeze

    Source: Monthly Weather Review:;1987:;volume( 115 ):;issue: 005::page 936
    Author:
    Yan, Hong
    ,
    Anthes, Richard A.
    DOI: 10.1175/1520-0493(1987)115<0936:TEOLOT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Long-term (five-day) integrations of a nonlinear numerical model of the sea breeze at the equator, 20°N, 30°N and 45°N indicate the importance of latitude on the sea breeze circulation. During the hours of strong heating when friction is largest and the static stability is smallest, a local sea-breeze frontal circulation develops in a similar way at all four latitudes. Evaluation of the terms in the circulation theorem indicates the dominance of the solenoid term (horizontal pressure gradient force) associated with the strong temperature contrast during this period. During the rest of the period, however, the pressure gradient and frictional forces weaken, the static stability increases, and the Coriolis force is dominant (except at the equator). Therefore, quite different circulations evolve at the different latitudes. At the equator, the absence of the Coriolis force results in a sea breeze at all times. At the other latitudes, the Coriolis force is responsible for producing the large-scale land breeze. At 20°N, the slower rotation of the horizontal wind after sunset produces a large-scale land breeze that persists until several hours after sunrise. At 30°N, the inertial effects produce a maximum land breeze at about sunrise, and the land breeze is strongest at this latitude. At 45°, the rotational rate of the horizontal wind after sunset is faster, so that the maximum land breeze occurs several hours before sunrise. These results indicate that the Coriolis force may be more important than the reversal of horizontal temperature gradient from day to night in producing large-scale land-scale land breeze away from the equator. The results pertaining to the large-scale circulation are in general agreement with Rotunno's linear theory, which predicts a fundamentally different behavior of the sea-breeze circulation depending upon whether the Coriolis parameter is greater or less than the frequency of the diurnal heating cycle.
    • Download: (1.105Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Latitude on the Sea Breeze

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4201750
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorYan, Hong
    contributor authorAnthes, Richard A.
    date accessioned2017-06-09T16:06:17Z
    date available2017-06-09T16:06:17Z
    date copyright1987/05/01
    date issued1987
    identifier issn0027-0644
    identifier otherams-61015.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4201750
    description abstractLong-term (five-day) integrations of a nonlinear numerical model of the sea breeze at the equator, 20°N, 30°N and 45°N indicate the importance of latitude on the sea breeze circulation. During the hours of strong heating when friction is largest and the static stability is smallest, a local sea-breeze frontal circulation develops in a similar way at all four latitudes. Evaluation of the terms in the circulation theorem indicates the dominance of the solenoid term (horizontal pressure gradient force) associated with the strong temperature contrast during this period. During the rest of the period, however, the pressure gradient and frictional forces weaken, the static stability increases, and the Coriolis force is dominant (except at the equator). Therefore, quite different circulations evolve at the different latitudes. At the equator, the absence of the Coriolis force results in a sea breeze at all times. At the other latitudes, the Coriolis force is responsible for producing the large-scale land breeze. At 20°N, the slower rotation of the horizontal wind after sunset produces a large-scale land breeze that persists until several hours after sunrise. At 30°N, the inertial effects produce a maximum land breeze at about sunrise, and the land breeze is strongest at this latitude. At 45°, the rotational rate of the horizontal wind after sunset is faster, so that the maximum land breeze occurs several hours before sunrise. These results indicate that the Coriolis force may be more important than the reversal of horizontal temperature gradient from day to night in producing large-scale land-scale land breeze away from the equator. The results pertaining to the large-scale circulation are in general agreement with Rotunno's linear theory, which predicts a fundamentally different behavior of the sea-breeze circulation depending upon whether the Coriolis parameter is greater or less than the frequency of the diurnal heating cycle.
    publisherAmerican Meteorological Society
    titleThe Effect of Latitude on the Sea Breeze
    typeJournal Paper
    journal volume115
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1987)115<0936:TEOLOT>2.0.CO;2
    journal fristpage936
    journal lastpage956
    treeMonthly Weather Review:;1987:;volume( 115 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian