YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    CO2-Induced Changes in Interannual Temperature and Precipitation Variability in 19 CMIP2 Experiments

    Source: Journal of Climate:;2002:;volume( 015 ):;issue: 017::page 2395
    Author:
    Räisänen, Jouni
    DOI: 10.1175/1520-0442(2002)015<2395:CICIIT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: CO2-induced changes in the interannual variability of monthly surface air temperature and precipitation are studied using 19 model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2). The magnitude of variability in the control runs appears generally reasonable, but it varies a great deal between different models, almost all of which overestimate temperature variability on low-latitude land areas. In most models the gradual doubling of CO2 leads to a decrease in temperature variability in the winter half-year in the extratropical Northern Hemisphere and over the high-latitude Southern Ocean. Over land in low latitudes and in northern midlatitudes in summer, a slight tendency toward increased temperature variability occurs. The standard deviation of monthly precipitation increases, on average, where the mean precipitation increases but also does so in some areas where the mean precipitation decreases slightly. The coefficient of variation of precipitation (i.e., the ratio between the standard deviation and the mean) also tends to increase in most areas, especially where the mean precipitation decreases. However, the changes in variability are less similar between the 19 experiments than the changes in mean temperature and precipitation, at least partly because they have a much lower signal-to-noise ratio. In addition, the changes in the standard deviation of monthly temperature are generally much smaller than the time-mean warming, which suggests that future changes in the extremes of interannual temperature variability will be largely determined by the latter.
    • Download: (2.362Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      CO2-Induced Changes in Interannual Temperature and Precipitation Variability in 19 CMIP2 Experiments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4201711
    Collections
    • Journal of Climate

    Show full item record

    contributor authorRäisänen, Jouni
    date accessioned2017-06-09T16:06:12Z
    date available2017-06-09T16:06:12Z
    date copyright2002/09/01
    date issued2002
    identifier issn0894-8755
    identifier otherams-6098.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4201711
    description abstractCO2-induced changes in the interannual variability of monthly surface air temperature and precipitation are studied using 19 model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2). The magnitude of variability in the control runs appears generally reasonable, but it varies a great deal between different models, almost all of which overestimate temperature variability on low-latitude land areas. In most models the gradual doubling of CO2 leads to a decrease in temperature variability in the winter half-year in the extratropical Northern Hemisphere and over the high-latitude Southern Ocean. Over land in low latitudes and in northern midlatitudes in summer, a slight tendency toward increased temperature variability occurs. The standard deviation of monthly precipitation increases, on average, where the mean precipitation increases but also does so in some areas where the mean precipitation decreases slightly. The coefficient of variation of precipitation (i.e., the ratio between the standard deviation and the mean) also tends to increase in most areas, especially where the mean precipitation decreases. However, the changes in variability are less similar between the 19 experiments than the changes in mean temperature and precipitation, at least partly because they have a much lower signal-to-noise ratio. In addition, the changes in the standard deviation of monthly temperature are generally much smaller than the time-mean warming, which suggests that future changes in the extremes of interannual temperature variability will be largely determined by the latter.
    publisherAmerican Meteorological Society
    titleCO2-Induced Changes in Interannual Temperature and Precipitation Variability in 19 CMIP2 Experiments
    typeJournal Paper
    journal volume15
    journal issue17
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2002)015<2395:CICIIT>2.0.CO;2
    journal fristpage2395
    journal lastpage2411
    treeJournal of Climate:;2002:;volume( 015 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian