YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño

    Source: Monthly Weather Review:;1982:;volume( 110 ):;issue: 005::page 354
    Author:
    Rasmusson, Eugene M.
    ,
    Carpenter, Thomas H.
    DOI: 10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Surface marine observations, satellite data, and station observations of surface pressure and precipitation are used to describe the evolution of sea surface temperature (SST) anomalies, surface wind fields, and precipitation anomaly patterns during major warm episodes in the eastern and central tropical Pacific. The sequence of events is described in terms of composite SST and wind fields (30°N?30°S) for six warm episodes since 1949, and time series and cross-spectral analyses of mean monthly data along six shipping lanes which cross the equator between the South American coast and 170°W. During the months preceding a warm episode, the equatorial easterlies are stronger than normal west of the dateline. This and other coherent and strongly developed anomaly patterns over the western equatorial Pacific and South Pacific are associated with a South Pacific Convergence Zone (SPCZ) located southwest of its normal position. During October-November prior to El Niño, the equatorial easterly anomalies in the western Pacific are replaced by westerly anomalies. This change coincides with the appearance of positive SST anomalies in the vicinity of the equator near the dateline. East of the dateline (140?170°W), the wind anomalies along the equator follow a different pattern, with the diminution of the easterlies lagging rather than leading the development of positive SST anomalies near the Ecuador-Peru coast. Further south, SST's increase and the easterlies show a general decrease over most of the latitude band 10?30°S prior to the coastal warming. Composites and cross-spectral analysis clearly show a westward migration of the eastern equatorial Pacific SST anomaly pattern from the South American coast into the central equatorial Pacific. Maximum SST anomalies typically occur around April-June along the South American coast, and near the end of the year around 170°W. This westward spread of positive SST anomalies coincides with the intensification of westerly wind anomalies along the equator and the development of anomalous northerly flow across the mean position of the lntertropical Convergence Zone (ITCZ). The southward shift of this convergence belt is accompanied by a northeastward shift of the SPCZ, resulting in a matter wedge-shaped dry zone and enhanced precipitation in the eastern and central tropical Pacific. The surface wind anomaly field in the central equatorial Pacific is most strongly developed during August-December following the maximum SST anomalies along the Ecuador-Peru coast. During the northern winter following El Niño, the positive SST anomalies, as well as the low-level convergence and positive precipitation anomalies, are concentrated in the central equatorial Pacific. A simple calculation based on the surface divergence composite indicates that at this time enhanced large-scale vapor flux convergence in this area is comparable in magnitude to the enhanced precipitation. The western end of a precipitation anomaly seesaw also appears in the data. Below normal precipitation is observed over Indonesia during the year of El Niño. Negative precipitation anomalies in the subtropics are associated with enhanced divergence and a weakened east Asian northeast winter monsoon in the Northern Hemisphere, and a weakened summer convergence zone east of Australia in the Southern Hemisphere.
    • Download: (2.477Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4200667
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorRasmusson, Eugene M.
    contributor authorCarpenter, Thomas H.
    date accessioned2017-06-09T16:03:49Z
    date available2017-06-09T16:03:49Z
    date copyright1982/05/01
    date issued1982
    identifier issn0027-0644
    identifier otherams-60041.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4200667
    description abstractSurface marine observations, satellite data, and station observations of surface pressure and precipitation are used to describe the evolution of sea surface temperature (SST) anomalies, surface wind fields, and precipitation anomaly patterns during major warm episodes in the eastern and central tropical Pacific. The sequence of events is described in terms of composite SST and wind fields (30°N?30°S) for six warm episodes since 1949, and time series and cross-spectral analyses of mean monthly data along six shipping lanes which cross the equator between the South American coast and 170°W. During the months preceding a warm episode, the equatorial easterlies are stronger than normal west of the dateline. This and other coherent and strongly developed anomaly patterns over the western equatorial Pacific and South Pacific are associated with a South Pacific Convergence Zone (SPCZ) located southwest of its normal position. During October-November prior to El Niño, the equatorial easterly anomalies in the western Pacific are replaced by westerly anomalies. This change coincides with the appearance of positive SST anomalies in the vicinity of the equator near the dateline. East of the dateline (140?170°W), the wind anomalies along the equator follow a different pattern, with the diminution of the easterlies lagging rather than leading the development of positive SST anomalies near the Ecuador-Peru coast. Further south, SST's increase and the easterlies show a general decrease over most of the latitude band 10?30°S prior to the coastal warming. Composites and cross-spectral analysis clearly show a westward migration of the eastern equatorial Pacific SST anomaly pattern from the South American coast into the central equatorial Pacific. Maximum SST anomalies typically occur around April-June along the South American coast, and near the end of the year around 170°W. This westward spread of positive SST anomalies coincides with the intensification of westerly wind anomalies along the equator and the development of anomalous northerly flow across the mean position of the lntertropical Convergence Zone (ITCZ). The southward shift of this convergence belt is accompanied by a northeastward shift of the SPCZ, resulting in a matter wedge-shaped dry zone and enhanced precipitation in the eastern and central tropical Pacific. The surface wind anomaly field in the central equatorial Pacific is most strongly developed during August-December following the maximum SST anomalies along the Ecuador-Peru coast. During the northern winter following El Niño, the positive SST anomalies, as well as the low-level convergence and positive precipitation anomalies, are concentrated in the central equatorial Pacific. A simple calculation based on the surface divergence composite indicates that at this time enhanced large-scale vapor flux convergence in this area is comparable in magnitude to the enhanced precipitation. The western end of a precipitation anomaly seesaw also appears in the data. Below normal precipitation is observed over Indonesia during the year of El Niño. Negative precipitation anomalies in the subtropics are associated with enhanced divergence and a weakened east Asian northeast winter monsoon in the Northern Hemisphere, and a weakened summer convergence zone east of Australia in the Southern Hemisphere.
    publisherAmerican Meteorological Society
    titleVariations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño
    typeJournal Paper
    journal volume110
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
    journal fristpage354
    journal lastpage384
    treeMonthly Weather Review:;1982:;volume( 110 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian