YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structure and Mechanisms of South Indian Ocean Climate Variability

    Source: Journal of Climate:;2002:;volume( 015 ):;issue: 008::page 864
    Author:
    Xie, Shang-Ping
    ,
    Annamalai, H.
    ,
    Schott, Friedrich A.
    ,
    McCreary, Julian P.
    DOI: 10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A unique open-ocean upwelling exists in the tropical South Indian Ocean (SIO), a result of the negative wind curl between the southeasterly trades and equatorial westerlies, raising the thermocline in the west. Analysis of in situ measurements and a model-assimilated dataset reveals a strong influence of subsurface thermocline variability on sea surface temperature (SST) in this upwelling zone. El Niño?Southern Oscillation (ENSO) is found to be the dominant forcing for the SIO thermocline variability, with SST variability off Sumatra, Indonesia, also making a significant contribution. When either an El Niño or Sumatra cooling event takes place, anomalous easterlies appear in the equatorial Indian Ocean, forcing a westward-propagating downwelling Rossby wave in the SIO. In phase with this dynamic Rossby wave, there is a pronounced copropagation of SST. Moreover, a positive precipitation anomaly is found over, or just to the south of, the Rossby wave?induced positive SST anomaly, resulting in a cyclonic circulation in the surface wind field that appears to feedback onto the SST anomaly. Finally, this downwelling Rossby wave also increases tropical cyclone activity in the SIO through its SST effect. This coupled Rossby wave thus offers potential predictability for SST and tropical cyclones in the western SIO. These results suggest that models that allow for the existence of upwelling and Rossby wave dynamics will have better seasonal forecasts than ones that use a slab ocean mixed layer. The lagged-correlation analysis shows that SST anomalies off Java, Indonesia, tend to precede those off Sumatra by a season, a time lead that may further increase the Indian Ocean predictability.
    • Download: (1.449Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structure and Mechanisms of South Indian Ocean Climate Variability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4200624
    Collections
    • Journal of Climate

    Show full item record

    contributor authorXie, Shang-Ping
    contributor authorAnnamalai, H.
    contributor authorSchott, Friedrich A.
    contributor authorMcCreary, Julian P.
    date accessioned2017-06-09T16:03:44Z
    date available2017-06-09T16:03:44Z
    date copyright2002/04/01
    date issued2002
    identifier issn0894-8755
    identifier otherams-6000.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4200624
    description abstractA unique open-ocean upwelling exists in the tropical South Indian Ocean (SIO), a result of the negative wind curl between the southeasterly trades and equatorial westerlies, raising the thermocline in the west. Analysis of in situ measurements and a model-assimilated dataset reveals a strong influence of subsurface thermocline variability on sea surface temperature (SST) in this upwelling zone. El Niño?Southern Oscillation (ENSO) is found to be the dominant forcing for the SIO thermocline variability, with SST variability off Sumatra, Indonesia, also making a significant contribution. When either an El Niño or Sumatra cooling event takes place, anomalous easterlies appear in the equatorial Indian Ocean, forcing a westward-propagating downwelling Rossby wave in the SIO. In phase with this dynamic Rossby wave, there is a pronounced copropagation of SST. Moreover, a positive precipitation anomaly is found over, or just to the south of, the Rossby wave?induced positive SST anomaly, resulting in a cyclonic circulation in the surface wind field that appears to feedback onto the SST anomaly. Finally, this downwelling Rossby wave also increases tropical cyclone activity in the SIO through its SST effect. This coupled Rossby wave thus offers potential predictability for SST and tropical cyclones in the western SIO. These results suggest that models that allow for the existence of upwelling and Rossby wave dynamics will have better seasonal forecasts than ones that use a slab ocean mixed layer. The lagged-correlation analysis shows that SST anomalies off Java, Indonesia, tend to precede those off Sumatra by a season, a time lead that may further increase the Indian Ocean predictability.
    publisherAmerican Meteorological Society
    titleStructure and Mechanisms of South Indian Ocean Climate Variability
    typeJournal Paper
    journal volume15
    journal issue8
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2
    journal fristpage864
    journal lastpage878
    treeJournal of Climate:;2002:;volume( 015 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian