YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Use of Autoregressive-Moving Average Processes to Model Meteorological Time Series

    Source: Monthly Weather Review:;1981:;volume( 109 ):;issue: 003::page 479
    Author:
    Katz, Richard W.
    ,
    Skaggs, Richard H.
    DOI: 10.1175/1520-0493(1981)109<0479:OTUOAM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Statistical problems that may be encountered in fitting autoregressive-moving average (ARMA) processes to meteorological time series are described. Techniques that lead to an increased likelihood of choosing the most appropriate ARMA process to model the data at hand are emphasized. One specific meteorological application of ARMA processes, the modeling of Palmer Drought Index time series for climatic divisions of the United States is considered in detail. It is shown that low-order purely autoregressive processes adequately fit these data.
    • Download: (487.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Use of Autoregressive-Moving Average Processes to Model Meteorological Time Series

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4200430
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorKatz, Richard W.
    contributor authorSkaggs, Richard H.
    date accessioned2017-06-09T16:03:17Z
    date available2017-06-09T16:03:17Z
    date copyright1981/03/01
    date issued1981
    identifier issn0027-0644
    identifier otherams-59829.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4200430
    description abstractStatistical problems that may be encountered in fitting autoregressive-moving average (ARMA) processes to meteorological time series are described. Techniques that lead to an increased likelihood of choosing the most appropriate ARMA process to model the data at hand are emphasized. One specific meteorological application of ARMA processes, the modeling of Palmer Drought Index time series for climatic divisions of the United States is considered in detail. It is shown that low-order purely autoregressive processes adequately fit these data.
    publisherAmerican Meteorological Society
    titleOn the Use of Autoregressive-Moving Average Processes to Model Meteorological Time Series
    typeJournal Paper
    journal volume109
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1981)109<0479:OTUOAM>2.0.CO;2
    journal fristpage479
    journal lastpage484
    treeMonthly Weather Review:;1981:;volume( 109 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian