YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Kinematic and Dynamic Aspects of the Harrah Tornadic Storm Analyzed from Dual-Doppler Radar Data

    Source: Monthly Weather Review:;1978:;volume( 106 ):;issue: 002::page 233
    Author:
    Heymsfield, Gerald M.
    DOI: 10.1175/1520-0493(1978)106<0233:KADAOT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The paper deals with a diagnostic study of the three-dimensional kinematic and dynamic structure of the Harrah tornadic storm. Wind fields were computed from data collected over a 28 min interval in four dual-Doppler radar volume scans during a tornado occurrence. Associated with this storm, there was a strong low-level inflow jet supplying warm, moist air to a tilted updraft, a mid-level vortex doublet, and downdrafts on both storm flanks. The left flank downdraft intensified, undercut the tilted updraft, and formed a gust front along the right rear flank. The gust front propagated cyclonically around the mesocyclone. Calculations of divergence and vorticity showed that in the middle troposphere, the updraft nearly coincided with cyclonic vorticity approximately 10?2 s?1. The low-level tornado cyclone was between the horizontally sheared inflow-outflow region. A mechanism for producing and intensifying this vorticity and downdraft structure is presented on the basis of calculations of the tilting and divergence terms of the vorticity equation. The gross features of the mid-level vortex doublet were simulated by a potential flow model. The storm translational motion is discussed in terms of this model and a balance of drag, momentum and rotational forces. The force due to vertical transport of low-level momentum in the updraft is important in counteracting the large rightward force due to rotation. In an appendix, sources of errors in the wind computations are discussed in terms of the assumptions of the statistical interpolation and vertical motion calculation. The scales of motion resolved in the analysis are larger than approximately 4 km due to the interpolation and grid-filtering used.
    • Download: (1.751Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Kinematic and Dynamic Aspects of the Harrah Tornadic Storm Analyzed from Dual-Doppler Radar Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4199792
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHeymsfield, Gerald M.
    date accessioned2017-06-09T16:01:56Z
    date available2017-06-09T16:01:56Z
    date copyright1978/02/01
    date issued1978
    identifier issn0027-0644
    identifier otherams-59254.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4199792
    description abstractThe paper deals with a diagnostic study of the three-dimensional kinematic and dynamic structure of the Harrah tornadic storm. Wind fields were computed from data collected over a 28 min interval in four dual-Doppler radar volume scans during a tornado occurrence. Associated with this storm, there was a strong low-level inflow jet supplying warm, moist air to a tilted updraft, a mid-level vortex doublet, and downdrafts on both storm flanks. The left flank downdraft intensified, undercut the tilted updraft, and formed a gust front along the right rear flank. The gust front propagated cyclonically around the mesocyclone. Calculations of divergence and vorticity showed that in the middle troposphere, the updraft nearly coincided with cyclonic vorticity approximately 10?2 s?1. The low-level tornado cyclone was between the horizontally sheared inflow-outflow region. A mechanism for producing and intensifying this vorticity and downdraft structure is presented on the basis of calculations of the tilting and divergence terms of the vorticity equation. The gross features of the mid-level vortex doublet were simulated by a potential flow model. The storm translational motion is discussed in terms of this model and a balance of drag, momentum and rotational forces. The force due to vertical transport of low-level momentum in the updraft is important in counteracting the large rightward force due to rotation. In an appendix, sources of errors in the wind computations are discussed in terms of the assumptions of the statistical interpolation and vertical motion calculation. The scales of motion resolved in the analysis are larger than approximately 4 km due to the interpolation and grid-filtering used.
    publisherAmerican Meteorological Society
    titleKinematic and Dynamic Aspects of the Harrah Tornadic Storm Analyzed from Dual-Doppler Radar Data
    typeJournal Paper
    journal volume106
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1978)106<0233:KADAOT>2.0.CO;2
    journal fristpage233
    journal lastpage254
    treeMonthly Weather Review:;1978:;volume( 106 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian