YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling of North Pacific Climate Variability Forced by Oceanic Heat Flux Anomalies

    Source: Journal of Climate:;2001:;volume( 014 ):;issue: 020::page 4027
    Author:
    Yulaeva, Elena
    ,
    Schneider, Niklas
    ,
    Pierce, David W.
    ,
    Barnett, Tim P.
    DOI: 10.1175/1520-0442(2001)014<4027:MONPCV>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Potential predictability of low-frequency climate changes in the North Pacific depends on two main factors. The first is the sensitivity of the atmosphere to ocean-induced anomalies at the sea surface in midlatitudes. The second is the degree of teleconnectivity of the tropical low-frequency variability to midlatitudes. In contrast to the traditional approach of prescribing sea surface temperature (SST) anomalies, the response of a coupled atmospheric general circulation (CCM3)?mixed layer ocean model to oceanic perturbations of the mixed layer heat budget is examined. Since positive oceanic heat flux perturbations partially increase SST anomalies (locally), and partially are vented directly into the atmosphere, expressing boundary forcing on the atmosphere by prescribing upper-ocean heat flux anomalies allows for better understanding of the physical mechanism of low-frequency variability in midlatitudes. In the framework of this approach SST is considered to be a part of the adjustment of the coupled system rather than an external forcing. Wintertime model responses to mixed layer heat budget perturbations of up to 40 W m?2 in the Kuroshio extension region and in the tropical central Pacific show statistically significant anomalies of 500-mb geopotential height (Z500) in the midlatitudes. The response to the tropical forcing resembles the well-known Pacific?North American pattern, one of the leading modes of internal variability of the control run. The amplitude of the Z500 geopotential height reaches 40 m in the region of the Aleutian low. The response of Z500 to forcing in the Kuroshio Current extension region resembles the mixture of western Pacific and Pacific?North American patterns, the first two modes of the internal variability of the atmosphere. In midlatitudes this response is equivalent barotropic, with the maximum of 80 m at (60°N, 160°W). Examination of the vorticity and thermodynamic budgets reveals the crucial role of submonthly transient eddies in maintaining the anomalous circulation in the free atmosphere. At the surface the response manifests itself in changes of surface temperature and the wind stress. The amplitude of response to the tropical forcing in the SST field at the Kuroshio Current extension region is up to 0.3 K (in absolute value) that is 2 times weaker than SST anomalies induced by midlatitude forcing of the same amplitude. In addition, the spatial structures of the responses in the SST field over the North Pacific are different. While tropical forcing induces SST anomalies in the central North Pacific, the midlatitude forcing causes SST anomalies off the east coast of Japan, in the Kuroshio?Oyashio extension region. Overall, remote tropical forcing appears to be effective in driving anomalies over the central North Pacific. This signal can be transported westward by the oceanic processes. Thus tropical forcing anomalies can serve as a precursor of the changes over the western North Pacific. In the case of midlatitude forcing, the response in the wind stress field alters Ekman pumping in such a way that the expected change of the oceanic gyre, as measured by the Sverdrup transport, would counteract the prescribed forcing in the Kuroshio extension region, thus causing a negative feedback. This response is consistent with the hypothesis that quasi-oscillatory decadal climate variations in the North Pacific result from midlatitude ocean?atmosphere interaction.
    • Download: (787.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling of North Pacific Climate Variability Forced by Oceanic Heat Flux Anomalies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4199567
    Collections
    • Journal of Climate

    Show full item record

    contributor authorYulaeva, Elena
    contributor authorSchneider, Niklas
    contributor authorPierce, David W.
    contributor authorBarnett, Tim P.
    date accessioned2017-06-09T16:01:28Z
    date available2017-06-09T16:01:28Z
    date copyright2001/10/01
    date issued2001
    identifier issn0894-8755
    identifier otherams-5905.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4199567
    description abstractPotential predictability of low-frequency climate changes in the North Pacific depends on two main factors. The first is the sensitivity of the atmosphere to ocean-induced anomalies at the sea surface in midlatitudes. The second is the degree of teleconnectivity of the tropical low-frequency variability to midlatitudes. In contrast to the traditional approach of prescribing sea surface temperature (SST) anomalies, the response of a coupled atmospheric general circulation (CCM3)?mixed layer ocean model to oceanic perturbations of the mixed layer heat budget is examined. Since positive oceanic heat flux perturbations partially increase SST anomalies (locally), and partially are vented directly into the atmosphere, expressing boundary forcing on the atmosphere by prescribing upper-ocean heat flux anomalies allows for better understanding of the physical mechanism of low-frequency variability in midlatitudes. In the framework of this approach SST is considered to be a part of the adjustment of the coupled system rather than an external forcing. Wintertime model responses to mixed layer heat budget perturbations of up to 40 W m?2 in the Kuroshio extension region and in the tropical central Pacific show statistically significant anomalies of 500-mb geopotential height (Z500) in the midlatitudes. The response to the tropical forcing resembles the well-known Pacific?North American pattern, one of the leading modes of internal variability of the control run. The amplitude of the Z500 geopotential height reaches 40 m in the region of the Aleutian low. The response of Z500 to forcing in the Kuroshio Current extension region resembles the mixture of western Pacific and Pacific?North American patterns, the first two modes of the internal variability of the atmosphere. In midlatitudes this response is equivalent barotropic, with the maximum of 80 m at (60°N, 160°W). Examination of the vorticity and thermodynamic budgets reveals the crucial role of submonthly transient eddies in maintaining the anomalous circulation in the free atmosphere. At the surface the response manifests itself in changes of surface temperature and the wind stress. The amplitude of response to the tropical forcing in the SST field at the Kuroshio Current extension region is up to 0.3 K (in absolute value) that is 2 times weaker than SST anomalies induced by midlatitude forcing of the same amplitude. In addition, the spatial structures of the responses in the SST field over the North Pacific are different. While tropical forcing induces SST anomalies in the central North Pacific, the midlatitude forcing causes SST anomalies off the east coast of Japan, in the Kuroshio?Oyashio extension region. Overall, remote tropical forcing appears to be effective in driving anomalies over the central North Pacific. This signal can be transported westward by the oceanic processes. Thus tropical forcing anomalies can serve as a precursor of the changes over the western North Pacific. In the case of midlatitude forcing, the response in the wind stress field alters Ekman pumping in such a way that the expected change of the oceanic gyre, as measured by the Sverdrup transport, would counteract the prescribed forcing in the Kuroshio extension region, thus causing a negative feedback. This response is consistent with the hypothesis that quasi-oscillatory decadal climate variations in the North Pacific result from midlatitude ocean?atmosphere interaction.
    publisherAmerican Meteorological Society
    titleModeling of North Pacific Climate Variability Forced by Oceanic Heat Flux Anomalies
    typeJournal Paper
    journal volume14
    journal issue20
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2001)014<4027:MONPCV>2.0.CO;2
    journal fristpage4027
    journal lastpage4046
    treeJournal of Climate:;2001:;volume( 014 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian