YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Coupled Ocean–Atmosphere Dynamics in a Simple Midlatitude Climate Model

    Source: Journal of Climate:;2001:;volume( 014 ):;issue: 017::page 3704
    Author:
    Ferreira, David
    ,
    Frankignoul, Claude
    ,
    Marshall, John
    DOI: 10.1175/1520-0442(2001)014<3704:COADIA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Midlatitude air?sea interactions are investigated by coupling a stochastically forced two-layer quasigeostrophic channel atmosphere to a simple ocean model. The stochastic forcing has a large-scale standing pattern to simulate the main modes of low-frequency atmospheric variability. When the atmosphere interacts with an oceanic mixed layer via surface heat exchanges, the white noise forcing generates an approximately red noise sea surface temperature (SST) response. As the SST adjusts to the air temperature changes at low frequency, thus decreasing the heat flux damping, the atmospheric spectra are slightly reddened, the power enhancement increasing with the zonal scale because of atmospheric dynamics. Decadal variability is enhanced by considering a first baroclinic oceanic mode that is forced by Ekman pumping and modulates the SST by entrainment and horizontal advection. The ocean interior is bounded at its eastern edge, and a radiation condition is used in the west. Primarily in wintertime conditions, a positive feedback takes place between the atmosphere and the ocean when the atmospheric response to the SST is equivalent barotropic. Then, the ocean interior modulates the SST in a way that leads to a reinforcement of its forcing by the wind stress, although the heat flux feedback is negative. The coupled mode propagates slowly westward with exponentially increasing amplitude, and it is fetch limited. The atmospheric and SST spectral power increase at all periods longer than 10 yr when the coupling with the ocean interior occurs by entrainment. When it occurs by advection, the power increase is primarily found at near-decadal periods, resulting in a slightly oscillatory behavior of the coupled system. Ocean dynamics thus leads to a small, but significant, long-term climate predictability, up to about 6 yr in advance in the entrainment case.
    • Download: (1.081Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Coupled Ocean–Atmosphere Dynamics in a Simple Midlatitude Climate Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4199322
    Collections
    • Journal of Climate

    Show full item record

    contributor authorFerreira, David
    contributor authorFrankignoul, Claude
    contributor authorMarshall, John
    date accessioned2017-06-09T16:00:59Z
    date available2017-06-09T16:00:59Z
    date copyright2001/09/01
    date issued2001
    identifier issn0894-8755
    identifier otherams-5883.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4199322
    description abstractMidlatitude air?sea interactions are investigated by coupling a stochastically forced two-layer quasigeostrophic channel atmosphere to a simple ocean model. The stochastic forcing has a large-scale standing pattern to simulate the main modes of low-frequency atmospheric variability. When the atmosphere interacts with an oceanic mixed layer via surface heat exchanges, the white noise forcing generates an approximately red noise sea surface temperature (SST) response. As the SST adjusts to the air temperature changes at low frequency, thus decreasing the heat flux damping, the atmospheric spectra are slightly reddened, the power enhancement increasing with the zonal scale because of atmospheric dynamics. Decadal variability is enhanced by considering a first baroclinic oceanic mode that is forced by Ekman pumping and modulates the SST by entrainment and horizontal advection. The ocean interior is bounded at its eastern edge, and a radiation condition is used in the west. Primarily in wintertime conditions, a positive feedback takes place between the atmosphere and the ocean when the atmospheric response to the SST is equivalent barotropic. Then, the ocean interior modulates the SST in a way that leads to a reinforcement of its forcing by the wind stress, although the heat flux feedback is negative. The coupled mode propagates slowly westward with exponentially increasing amplitude, and it is fetch limited. The atmospheric and SST spectral power increase at all periods longer than 10 yr when the coupling with the ocean interior occurs by entrainment. When it occurs by advection, the power increase is primarily found at near-decadal periods, resulting in a slightly oscillatory behavior of the coupled system. Ocean dynamics thus leads to a small, but significant, long-term climate predictability, up to about 6 yr in advance in the entrainment case.
    publisherAmerican Meteorological Society
    titleCoupled Ocean–Atmosphere Dynamics in a Simple Midlatitude Climate Model
    typeJournal Paper
    journal volume14
    journal issue17
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2001)014<3704:COADIA>2.0.CO;2
    journal fristpage3704
    journal lastpage3723
    treeJournal of Climate:;2001:;volume( 014 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian