YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Regional Variability in Tropical Convection: Observations from TRMM

    Source: Journal of Climate:;2001:;volume( 014 ):;issue: 017::page 3566
    Author:
    Petersen, Walter A.
    ,
    Rutledge, Steven A.
    DOI: 10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Observation of the vertical profile of precipitation over the global Tropics is a key objective of the Tropical Rainfall Measuring Mission (TRMM) because this information is central to obtaining vertical profiles of latent heating. This study combines both TRMM precipitation radar (PR) and Lightning Imaging Sensor (LIS) data to examine ?wet-season? vertical structures of tropical precipitation across a broad spectrum of locations in the global Tropics. TRMM-PR reflectivity data (2A25 algorithm) were utilized to produce seasonal mean three-dimensional relative frequency histograms and precipitation ice water contents over grid boxes of approximately 5°?10° in latitude and longitude. The reflectivity histograms and ice water contents were then combined with LIS lightning flash densities and 2A25 mean rainfall rates to examine regional relationships between precipitation vertical structure, precipitation processes, and lightning production. Analysis of the reflectivity vertical structure histograms and lightning flash density data reveals that 1) relative to tropical continental locations, wet-season isolated tropical oceanic locations exhibit relatively little spatial (and in some instances seasonal) variability in vertical structure across the global Tropics; 2) coastal locations and areas located within 500?1000 km of a continent exhibit considerable seasonal and spatial variability in mean vertical structure, often resembling ?continental? profiles or falling intermediate to that of tropical continental and isolated oceanic regimes; and 3) interior tropical continental locations exhibit marked variability in vertical structure both spatially and seasonally, exhibiting a continuum of characteristics ranging from a near-isolated oceanic profile observed over the central Amazon and India to a more robust continental profile observed over regions such as the Congo and Florida. Examination of regional and seasonal mean conditional instability for a small but representative subset of the geographic locations suggests that tropospheric thermodynamic structure likely plays a significant role in the regional characteristics of precipitation vertical structure and associated lightning flash density. In general, the largest systematic variability in precipitation vertical structure observed between all of the locations examined occurred above the freezing level. It is important that subfreezing temperature variability in the vertical reflectivity structures was well reflected in the seasonal mean lightning flash densities and ice water contents diagnosed for each location. In turn, systematically larger rainfall rates were observed on a pixel-by-pixel basis in locations with larger precipitation ice water content and lightning flash density. These results delineate, in a regional sense, the relative importance of mixed-phase precipitation production across the global Tropics.
    • Download: (945.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Regional Variability in Tropical Convection: Observations from TRMM

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4199222
    Collections
    • Journal of Climate

    Show full item record

    contributor authorPetersen, Walter A.
    contributor authorRutledge, Steven A.
    date accessioned2017-06-09T16:00:47Z
    date available2017-06-09T16:00:47Z
    date copyright2001/09/01
    date issued2001
    identifier issn0894-8755
    identifier otherams-5874.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4199222
    description abstractObservation of the vertical profile of precipitation over the global Tropics is a key objective of the Tropical Rainfall Measuring Mission (TRMM) because this information is central to obtaining vertical profiles of latent heating. This study combines both TRMM precipitation radar (PR) and Lightning Imaging Sensor (LIS) data to examine ?wet-season? vertical structures of tropical precipitation across a broad spectrum of locations in the global Tropics. TRMM-PR reflectivity data (2A25 algorithm) were utilized to produce seasonal mean three-dimensional relative frequency histograms and precipitation ice water contents over grid boxes of approximately 5°?10° in latitude and longitude. The reflectivity histograms and ice water contents were then combined with LIS lightning flash densities and 2A25 mean rainfall rates to examine regional relationships between precipitation vertical structure, precipitation processes, and lightning production. Analysis of the reflectivity vertical structure histograms and lightning flash density data reveals that 1) relative to tropical continental locations, wet-season isolated tropical oceanic locations exhibit relatively little spatial (and in some instances seasonal) variability in vertical structure across the global Tropics; 2) coastal locations and areas located within 500?1000 km of a continent exhibit considerable seasonal and spatial variability in mean vertical structure, often resembling ?continental? profiles or falling intermediate to that of tropical continental and isolated oceanic regimes; and 3) interior tropical continental locations exhibit marked variability in vertical structure both spatially and seasonally, exhibiting a continuum of characteristics ranging from a near-isolated oceanic profile observed over the central Amazon and India to a more robust continental profile observed over regions such as the Congo and Florida. Examination of regional and seasonal mean conditional instability for a small but representative subset of the geographic locations suggests that tropospheric thermodynamic structure likely plays a significant role in the regional characteristics of precipitation vertical structure and associated lightning flash density. In general, the largest systematic variability in precipitation vertical structure observed between all of the locations examined occurred above the freezing level. It is important that subfreezing temperature variability in the vertical reflectivity structures was well reflected in the seasonal mean lightning flash densities and ice water contents diagnosed for each location. In turn, systematically larger rainfall rates were observed on a pixel-by-pixel basis in locations with larger precipitation ice water content and lightning flash density. These results delineate, in a regional sense, the relative importance of mixed-phase precipitation production across the global Tropics.
    publisherAmerican Meteorological Society
    titleRegional Variability in Tropical Convection: Observations from TRMM
    typeJournal Paper
    journal volume14
    journal issue17
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2
    journal fristpage3566
    journal lastpage3586
    treeJournal of Climate:;2001:;volume( 014 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian