YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids

    Source: Monthly Weather Review:;1972:;volume( 100 ):;issue: 002::page 136
    Author:
    SADOURNY, ROBERT
    DOI: 10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2
    Publisher: American Meteorological Society
    Abstract: A class of conservative finite-difference approximations of the primitive equations is given for quasi-uniform spherical grids derived from regular polyhedrons. The earth is split into several contiguous regions. Within each region, a coordinate system derived from central projections is used, instead of the spherical coordinate system, to avoid the use of inconsistent boundary conditions at the poles. The presence of artificial internal boundaries has no effect on the conservation properties of the approximations. Examples of conservative schemes, up to the second order in the case of a cube, are given. A selective damping operator is needed to remove the two-grid interval waves generated by the existence of internal boundaries.
    • Download: (776.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4198854
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSADOURNY, ROBERT
    date accessioned2017-06-09T15:59:52Z
    date available2017-06-09T15:59:52Z
    date copyright1972/02/01
    date issued1972
    identifier issn0027-0644
    identifier otherams-58410.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4198854
    description abstractA class of conservative finite-difference approximations of the primitive equations is given for quasi-uniform spherical grids derived from regular polyhedrons. The earth is split into several contiguous regions. Within each region, a coordinate system derived from central projections is used, instead of the spherical coordinate system, to avoid the use of inconsistent boundary conditions at the poles. The presence of artificial internal boundaries has no effect on the conservation properties of the approximations. Examples of conservative schemes, up to the second order in the case of a cube, are given. A selective damping operator is needed to remove the two-grid interval waves generated by the existence of internal boundaries.
    publisherAmerican Meteorological Society
    titleConservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids
    typeJournal Paper
    journal volume100
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2
    journal fristpage136
    journal lastpage144
    treeMonthly Weather Review:;1972:;volume( 100 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian