YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A STUDY OF A DEVELOPING WAVE CYCLONE

    Source: Monthly Weather Review:;1968:;volume( 096 ):;issue: 004::page 208
    Author:
    KRISHNAMURTI, T. N.
    DOI: 10.1175/1520-0493(1968)096<0208:ASOADW>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In the past most diagnostic studies of frontal cyclone development have been carried out through use of quasi-geostrophic models. In this paper we present the results of vertical motions obtained from a 5-level general balance model. Nongeostrophic effects such as deformation and beta term of the balance equations, divergence, vertical advection, and the twisting term of the complete vorticity equation are retained. Advection of thermal and vorticity fields by the divergent part of the wind are also included in this analysis. Diabatic effect through release of latent heat in regions of saturated dynamic ascent, frictional effects at the lower boundary, and sensible heat transfer from the lake waters to the atmosphere are additional features. The results are presented in a partitioned form. The main results of the calculation reveal that: in the initial difluent stage of the upper trough pronounced sinking motions behind the trough are associated with a strong field of convergence in the northwesterly flow in the upper trough. This sinking motion is partitioned to arise primarily from differential vorticity advection by nondivergent part of the wind, Laplacian of thermal advection by nondivergent part of the wind, and the terrain downslope motion. The upper level development is followed by intense surface cyclogenesis during a period of approximately 36 hr. During the latter stages development is found to be associated with intense rising motion arising from differential vorticity advection by the nondivergent part of the wind, Laplacian of thermal advection by the nondivergent part of the wind, latent heat, and surface friction.
    • Download: (1.584Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A STUDY OF A DEVELOPING WAVE CYCLONE

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4198343
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorKRISHNAMURTI, T. N.
    date accessioned2017-06-09T15:58:39Z
    date available2017-06-09T15:58:39Z
    date copyright1968/04/01
    date issued1968
    identifier issn0027-0644
    identifier otherams-57951.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4198343
    description abstractIn the past most diagnostic studies of frontal cyclone development have been carried out through use of quasi-geostrophic models. In this paper we present the results of vertical motions obtained from a 5-level general balance model. Nongeostrophic effects such as deformation and beta term of the balance equations, divergence, vertical advection, and the twisting term of the complete vorticity equation are retained. Advection of thermal and vorticity fields by the divergent part of the wind are also included in this analysis. Diabatic effect through release of latent heat in regions of saturated dynamic ascent, frictional effects at the lower boundary, and sensible heat transfer from the lake waters to the atmosphere are additional features. The results are presented in a partitioned form. The main results of the calculation reveal that: in the initial difluent stage of the upper trough pronounced sinking motions behind the trough are associated with a strong field of convergence in the northwesterly flow in the upper trough. This sinking motion is partitioned to arise primarily from differential vorticity advection by nondivergent part of the wind, Laplacian of thermal advection by nondivergent part of the wind, and the terrain downslope motion. The upper level development is followed by intense surface cyclogenesis during a period of approximately 36 hr. During the latter stages development is found to be associated with intense rising motion arising from differential vorticity advection by the nondivergent part of the wind, Laplacian of thermal advection by the nondivergent part of the wind, latent heat, and surface friction.
    publisherAmerican Meteorological Society
    titleA STUDY OF A DEVELOPING WAVE CYCLONE
    typeJournal Paper
    journal volume96
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1968)096<0208:ASOADW>2.0.CO;2
    journal fristpage208
    journal lastpage217
    treeMonthly Weather Review:;1968:;volume( 096 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian