YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhancement and Error Estimation of Neural Network Prediction of Niño-3.4 SST Anomalies

    Source: Journal of Climate:;2001:;volume( 014 ):;issue: 009::page 2150
    Author:
    Yuval
    DOI: 10.1175/1520-0442(2001)014<2150:EAEEON>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A procedure to enhance neural network (NN) predictions of tropical Pacific sea surface temperature anomalies and calculating their estimated errors is presented. A simple linear correction enables more accurate predictions of warm and cold events but can result in introduction of larger errors in other cases. The prediction error estimates aid recognizing erroneously magnified anomalies and are used to sort the predictions into El Niño, La Niña, and neutral states. The error estimation process is based on bootstrap resamplings of the data and construction of a large number of bootstrap prediction replicas. A statistic calculated on the set of bootstrap replicas that corresponds to each of the actual predictions is used to estimate the prediction?s errors. The method is demonstrated on NN prediction of the Niño-3.4 index.
    • Download: (439.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhancement and Error Estimation of Neural Network Prediction of Niño-3.4 SST Anomalies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4198189
    Collections
    • Journal of Climate

    Show full item record

    contributor authorYuval
    date accessioned2017-06-09T15:58:17Z
    date available2017-06-09T15:58:17Z
    date copyright2001/05/01
    date issued2001
    identifier issn0894-8755
    identifier otherams-5781.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4198189
    description abstractA procedure to enhance neural network (NN) predictions of tropical Pacific sea surface temperature anomalies and calculating their estimated errors is presented. A simple linear correction enables more accurate predictions of warm and cold events but can result in introduction of larger errors in other cases. The prediction error estimates aid recognizing erroneously magnified anomalies and are used to sort the predictions into El Niño, La Niña, and neutral states. The error estimation process is based on bootstrap resamplings of the data and construction of a large number of bootstrap prediction replicas. A statistic calculated on the set of bootstrap replicas that corresponds to each of the actual predictions is used to estimate the prediction?s errors. The method is demonstrated on NN prediction of the Niño-3.4 index.
    publisherAmerican Meteorological Society
    titleEnhancement and Error Estimation of Neural Network Prediction of Niño-3.4 SST Anomalies
    typeJournal Paper
    journal volume14
    journal issue9
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2001)014<2150:EAEEON>2.0.CO;2
    journal fristpage2150
    journal lastpage2163
    treeJournal of Climate:;2001:;volume( 014 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian