YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    INDIRECT MEASUREMENTS OF ATMOSPHERIC TEMPERATURE PROFILES FROM SATELLITES: I. INTRODUCTION

    Source: Monthly Weather Review:;1966:;volume( 094 ):;issue: 006::page 351
    Author:
    WARK, D. O.
    ,
    FLEMING, H. E.
    DOI: 10.1175/1520-0493(1966)094<0351:IMOATP>2.3.CO;2
    Publisher: American Meteorological Society
    Abstract: Artificial earth satellites offer a unique opportunity to exploit the possibility of deducing temperature profiles on a global scale from measurements of radiance in several narrow spectral intervals in a strongly absorbing band of an atmospheric gas whose mixture is uniform. In the earth's atmosphere the 4.3-micron and 15-micron bands of carbon dioxide and the 5-mm. band of oxygen may be used; only the 15-micron band is considered in detail, although the procedures are applicable to the other bands. The problem considered is the numerical solution of the integral form of the radiative transfer equation from measurements in a finite set of spectral intervals. It is shown that, by a suitable approximation of the Planck radiance, the radiative transfer equation can be reduced to an integral equation of the first kind. After a discussion of the kernel, which is associated with the transmittance of the gas, the equation is changed to a finite set of equations which is amenable to numerical solution. The solution is limited to about six pieces of information, which may be expressed as points along the vertical profile, or as coefficients of an expansion; the limitation in information is manifest in the transmittance curves for the several spectral intervals, the errors of measurement, and the approximations employed. However, even in this limited case the formal solution of the set of equations is unstable. A method of stabilizing the solution by smoothing is discussed. In this process the amount of smoothing remains small, so that the inherent properties of the temperature profile are not affected. Several possible forms of the solution are discussed, and it is concluded that empirical orthogonal functions are preferred because they contain the physical information lacking in analytical forms. Examples are shown of solutions for radically different profiles, both with ?exact? simulated measurements and with random errors introduced.
    • Download: (1.287Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      INDIRECT MEASUREMENTS OF ATMOSPHERIC TEMPERATURE PROFILES FROM SATELLITES: I. INTRODUCTION

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4198113
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorWARK, D. O.
    contributor authorFLEMING, H. E.
    date accessioned2017-06-09T15:58:08Z
    date available2017-06-09T15:58:08Z
    date copyright1966/06/01
    date issued1966
    identifier issn0027-0644
    identifier otherams-57743.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4198113
    description abstractArtificial earth satellites offer a unique opportunity to exploit the possibility of deducing temperature profiles on a global scale from measurements of radiance in several narrow spectral intervals in a strongly absorbing band of an atmospheric gas whose mixture is uniform. In the earth's atmosphere the 4.3-micron and 15-micron bands of carbon dioxide and the 5-mm. band of oxygen may be used; only the 15-micron band is considered in detail, although the procedures are applicable to the other bands. The problem considered is the numerical solution of the integral form of the radiative transfer equation from measurements in a finite set of spectral intervals. It is shown that, by a suitable approximation of the Planck radiance, the radiative transfer equation can be reduced to an integral equation of the first kind. After a discussion of the kernel, which is associated with the transmittance of the gas, the equation is changed to a finite set of equations which is amenable to numerical solution. The solution is limited to about six pieces of information, which may be expressed as points along the vertical profile, or as coefficients of an expansion; the limitation in information is manifest in the transmittance curves for the several spectral intervals, the errors of measurement, and the approximations employed. However, even in this limited case the formal solution of the set of equations is unstable. A method of stabilizing the solution by smoothing is discussed. In this process the amount of smoothing remains small, so that the inherent properties of the temperature profile are not affected. Several possible forms of the solution are discussed, and it is concluded that empirical orthogonal functions are preferred because they contain the physical information lacking in analytical forms. Examples are shown of solutions for radically different profiles, both with ?exact? simulated measurements and with random errors introduced.
    publisherAmerican Meteorological Society
    titleINDIRECT MEASUREMENTS OF ATMOSPHERIC TEMPERATURE PROFILES FROM SATELLITES: I. INTRODUCTION
    typeJournal Paper
    journal volume94
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1966)094<0351:IMOATP>2.3.CO;2
    journal fristpage351
    journal lastpage362
    treeMonthly Weather Review:;1966:;volume( 094 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian