YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Global Precipitation and Thunderstorm Frequencies. Part II: Diurnal Variations

    Source: Journal of Climate:;2001:;volume( 014 ):;issue: 006::page 1112
    Author:
    Dai, Aiguo
    DOI: 10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Three-hourly present weather reports from ?15?000 stations around the globe and from the Comprehensive Ocean?Atmosphere Data Set from 1975 to 1997 were analyzed for diurnal variations in the frequency of occurrence for various types of precipitation (drizzle, nondrizzle, showery, nonshowery, and snow) and thunderstorms. Significant diurnal variations with amplitudes exceeding 20% of the daily mean are found over much of the globe, especially over land areas and during summer. Drizzle and nonshowery precipitation occur most frequently in the morning around 0600 local solar time (LST) over most land areas and from midnight to 0400 LST over many oceanic areas. Showery precipitation and thunderstorms occur much more frequently in the late afternoon than other times over most land areas in all seasons, with a diurnal amplitude exceeding 50% of the daily mean frequencies. Over the North Pacific, the North Atlantic, and many other oceanic areas adjacent to continents, showery precipitation is most frequent in the morning around 0600 LST, which is out of phase with land areas. Over the tropical and southern oceans, showery precipitation tends to peak from midnight to 0400 LST. Maritime thunderstorms occur most frequently around midnight. It is suggested that the diurnal variations in atmospheric relative humidity contribute to the morning maximum in the frequency of occurrence for drizzle and nonshowery precipitation, especially over land areas. Solar heating on the ground produces a late-afternoon maximum of convective available potential energy in the atmosphere that favors late-afternoon moist convection and showery precipitation over land areas during summer. This strong continental diurnal cycle induces a diurnal cycle of opposite phase in low-level convergence over large nearby oceanic areas that favors a morning maximum of maritime showery precipitation. Larger low-level convergence induced by pressure tides and higher relative humidity at night than at other times may contribute to the nighttime maximum of maritime showery and nonshowery precipitation over remote oceans far away from continents.
    • Download: (1.009Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Global Precipitation and Thunderstorm Frequencies. Part II: Diurnal Variations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4197445
    Collections
    • Journal of Climate

    Show full item record

    contributor authorDai, Aiguo
    date accessioned2017-06-09T15:56:39Z
    date available2017-06-09T15:56:39Z
    date copyright2001/03/01
    date issued2001
    identifier issn0894-8755
    identifier otherams-5714.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4197445
    description abstractThree-hourly present weather reports from ?15?000 stations around the globe and from the Comprehensive Ocean?Atmosphere Data Set from 1975 to 1997 were analyzed for diurnal variations in the frequency of occurrence for various types of precipitation (drizzle, nondrizzle, showery, nonshowery, and snow) and thunderstorms. Significant diurnal variations with amplitudes exceeding 20% of the daily mean are found over much of the globe, especially over land areas and during summer. Drizzle and nonshowery precipitation occur most frequently in the morning around 0600 local solar time (LST) over most land areas and from midnight to 0400 LST over many oceanic areas. Showery precipitation and thunderstorms occur much more frequently in the late afternoon than other times over most land areas in all seasons, with a diurnal amplitude exceeding 50% of the daily mean frequencies. Over the North Pacific, the North Atlantic, and many other oceanic areas adjacent to continents, showery precipitation is most frequent in the morning around 0600 LST, which is out of phase with land areas. Over the tropical and southern oceans, showery precipitation tends to peak from midnight to 0400 LST. Maritime thunderstorms occur most frequently around midnight. It is suggested that the diurnal variations in atmospheric relative humidity contribute to the morning maximum in the frequency of occurrence for drizzle and nonshowery precipitation, especially over land areas. Solar heating on the ground produces a late-afternoon maximum of convective available potential energy in the atmosphere that favors late-afternoon moist convection and showery precipitation over land areas during summer. This strong continental diurnal cycle induces a diurnal cycle of opposite phase in low-level convergence over large nearby oceanic areas that favors a morning maximum of maritime showery precipitation. Larger low-level convergence induced by pressure tides and higher relative humidity at night than at other times may contribute to the nighttime maximum of maritime showery and nonshowery precipitation over remote oceans far away from continents.
    publisherAmerican Meteorological Society
    titleGlobal Precipitation and Thunderstorm Frequencies. Part II: Diurnal Variations
    typeJournal Paper
    journal volume14
    journal issue6
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2
    journal fristpage1112
    journal lastpage1128
    treeJournal of Climate:;2001:;volume( 014 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian