YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Principal Component Analysis: Tropical Indo–Pacific Sea Surface Temperature and Sea Level Pressure

    Source: Journal of Climate:;2001:;volume( 014 ):;issue: 002::page 219
    Author:
    Monahan, Adam Hugh
    DOI: 10.1175/1520-0442(2001)013<0219:NPCATI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Nonlinear principal component analysis (NLPCA) is a generalization of traditional principal component analysis (PCA) that allows for the detection and characterization of low-dimensional nonlinear structure in multivariate datasets. The authors consider the application of NLPCA to two datasets: tropical Pacific sea surface temperature (SST) and tropical Indo?Pacific sea level pressure (SLP). It is found that for the SST data, the low-dimensional NLPCA approximations characterize the data better than do PCA approximations of the same dimensionality. In particular, the one-dimensional NLPCA approximation characterizes the asymmetry between spatial patterns characteristic of average El Niño and La Niña events, which the 1D PCA approximation cannot. The differences between NLPCA and PCA results are more modest for the SLP data, indicating that the lower-dimensional structures of this dataset are nearly linear.
    • Download: (354.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Principal Component Analysis: Tropical Indo–Pacific Sea Surface Temperature and Sea Level Pressure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4196645
    Collections
    • Journal of Climate

    Show full item record

    contributor authorMonahan, Adam Hugh
    date accessioned2017-06-09T15:54:13Z
    date available2017-06-09T15:54:13Z
    date copyright2001/01/01
    date issued2001
    identifier issn0894-8755
    identifier otherams-5642.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4196645
    description abstractNonlinear principal component analysis (NLPCA) is a generalization of traditional principal component analysis (PCA) that allows for the detection and characterization of low-dimensional nonlinear structure in multivariate datasets. The authors consider the application of NLPCA to two datasets: tropical Pacific sea surface temperature (SST) and tropical Indo?Pacific sea level pressure (SLP). It is found that for the SST data, the low-dimensional NLPCA approximations characterize the data better than do PCA approximations of the same dimensionality. In particular, the one-dimensional NLPCA approximation characterizes the asymmetry between spatial patterns characteristic of average El Niño and La Niña events, which the 1D PCA approximation cannot. The differences between NLPCA and PCA results are more modest for the SLP data, indicating that the lower-dimensional structures of this dataset are nearly linear.
    publisherAmerican Meteorological Society
    titleNonlinear Principal Component Analysis: Tropical Indo–Pacific Sea Surface Temperature and Sea Level Pressure
    typeJournal Paper
    journal volume14
    journal issue2
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2001)013<0219:NPCATI>2.0.CO;2
    journal fristpage219
    journal lastpage233
    treeJournal of Climate:;2001:;volume( 014 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian