Regional and Seasonal Variations of the Clear Sky Atmospheric Longwave Cooling over Tropical OceansSource: Journal of Climate:;2000:;volume( 013 ):;issue: 016::page 2863DOI: 10.1175/1520-0442(2000)013<2863:RASVOT>2.0.CO;2Publisher: American Meteorological Society
Abstract: The vertical distribution of the clear sky longwave cooling of the atmosphere over tropical oceans is inferred from three different datasets. Two of the datasets refer to the TIROS-N Operational Vertical Sounder (TOVS) NOAA/NASA Pathfinder project, PathA and PathB, and the last one refers to the ECMWF reanalysis (ERA-15). Differences are identified originating from the temperature and water vapor fields. They affect the geographical distribution of the longwave fields to various degrees. However, the three datasets lead to similar conclusions concerning the sensitivity of the clear sky total longwave cooling to SST variations. For the highest values of the SST (greater than 27°C), positively correlated to the increased efficiency of the longwave trapping (super-greenhouse effect), the atmosphere shows a lesser efficiency to cool radiatively. The atmosphere does reradiate the longwave radiation toward the surface as efficiently as it traps it. This is verified on regional as well as on seasonal scales. Such longwave cooling behavior is due to an increased mid- and upper-tropospheric humidity resulting from convective transports. The three datasets agree with the vertical distribution of the radiative cooling variations from normal to favorable to super-greenhouse effect conditions, except in the boundary layer, where the coarse resolution of the TOVS-retrieved data makes them not reliable in it. In ?normal? conditions the cooling uniformly increases over the vertical with the SST. Over 27°C, the cooling is intensified above 400 hPa and reduced between 900 and 400 hPa.
|
Collections
Show full item record
contributor author | Chéruy, F. | |
contributor author | Chevallier, F. | |
date accessioned | 2017-06-09T15:51:52Z | |
date available | 2017-06-09T15:51:52Z | |
date copyright | 2000/08/01 | |
date issued | 2000 | |
identifier issn | 0894-8755 | |
identifier other | ams-5539.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4195500 | |
description abstract | The vertical distribution of the clear sky longwave cooling of the atmosphere over tropical oceans is inferred from three different datasets. Two of the datasets refer to the TIROS-N Operational Vertical Sounder (TOVS) NOAA/NASA Pathfinder project, PathA and PathB, and the last one refers to the ECMWF reanalysis (ERA-15). Differences are identified originating from the temperature and water vapor fields. They affect the geographical distribution of the longwave fields to various degrees. However, the three datasets lead to similar conclusions concerning the sensitivity of the clear sky total longwave cooling to SST variations. For the highest values of the SST (greater than 27°C), positively correlated to the increased efficiency of the longwave trapping (super-greenhouse effect), the atmosphere shows a lesser efficiency to cool radiatively. The atmosphere does reradiate the longwave radiation toward the surface as efficiently as it traps it. This is verified on regional as well as on seasonal scales. Such longwave cooling behavior is due to an increased mid- and upper-tropospheric humidity resulting from convective transports. The three datasets agree with the vertical distribution of the radiative cooling variations from normal to favorable to super-greenhouse effect conditions, except in the boundary layer, where the coarse resolution of the TOVS-retrieved data makes them not reliable in it. In ?normal? conditions the cooling uniformly increases over the vertical with the SST. Over 27°C, the cooling is intensified above 400 hPa and reduced between 900 and 400 hPa. | |
publisher | American Meteorological Society | |
title | Regional and Seasonal Variations of the Clear Sky Atmospheric Longwave Cooling over Tropical Oceans | |
type | Journal Paper | |
journal volume | 13 | |
journal issue | 16 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/1520-0442(2000)013<2863:RASVOT>2.0.CO;2 | |
journal fristpage | 2863 | |
journal lastpage | 2875 | |
tree | Journal of Climate:;2000:;volume( 013 ):;issue: 016 | |
contenttype | Fulltext |