YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison and Optimization of AVHRR Sea Surface Temperature Algorithms

    Source: Journal of Atmospheric and Oceanic Technology:;1989:;volume( 006 ):;issue: 006::page 1083
    Author:
    Barton, I. J.
    ,
    Cechet, R. P.
    DOI: 10.1175/1520-0426(1989)006<1083:CAOOAS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Satellite measurements of sea surface temperature (SST) are regularly available from data supplied by the AVHRR instruments on the NOAA meteorological satellites. In cloudless areas SST is derived from the infrared data using a differential absorption technique to correct for the effect of the atmosphere. For the AVHRR data a multichannel (multiwavelength) approach is used and global operational algorithms are in use. During 1990 a new instrument that has been specifically designed to measure SST will be launched on the European satellite, ERS-1. The Along Track Scanning Radiometer (ATSR) will provide six infrared measurements for each pixel on the earth's surface. Using the same differential absorption techniques, a multitude of algorithms for providing SST will then be possible. In this note a technique is described that will enable the comparison and optimization of SST algorithms and will also aid in the selection of the most appropriate algorithm for ATSR data analysis. To demonstrate the technique mosaic images were constructed from small areas of cloud-free infrared images of the sea surface as seen by the NOAA-9 AVHRR. Each area was approximately 55 km by 55 km and, by arranging them in order of decreasing mean temperature and increasing mean zenith angle, it was possible to use an image analysis system to compare the relative performance of different algorithms for deriving surface temperature. The images were also used to compare some NOAA-7 SST algorithms. A second set of mosaic images was constructed using NOAA-10 AVHRR data collected on the same night and for the same surface location. Images of SST derived with theoretical NOAA-10 algorithms were compared with those from an operational NOAA-9 algorithm. Then a simple optimization technique was used to obtain a new algorithm for deriving SST from channels 3 and 4 of the NOAA-10 instrument. This optimization scheme, using an ordered mosaic image that covers a wide range of conditions (location, local zenith angle, or some other parameter), should be applicable to the comparison and optimization of other satellite data products.
    • Download: (560.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison and Optimization of AVHRR Sea Surface Temperature Algorithms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4194067
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorBarton, I. J.
    contributor authorCechet, R. P.
    date accessioned2017-06-09T15:48:43Z
    date available2017-06-09T15:48:43Z
    date copyright1989/12/01
    date issued1989
    identifier issn0739-0572
    identifier otherams-541.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4194067
    description abstractSatellite measurements of sea surface temperature (SST) are regularly available from data supplied by the AVHRR instruments on the NOAA meteorological satellites. In cloudless areas SST is derived from the infrared data using a differential absorption technique to correct for the effect of the atmosphere. For the AVHRR data a multichannel (multiwavelength) approach is used and global operational algorithms are in use. During 1990 a new instrument that has been specifically designed to measure SST will be launched on the European satellite, ERS-1. The Along Track Scanning Radiometer (ATSR) will provide six infrared measurements for each pixel on the earth's surface. Using the same differential absorption techniques, a multitude of algorithms for providing SST will then be possible. In this note a technique is described that will enable the comparison and optimization of SST algorithms and will also aid in the selection of the most appropriate algorithm for ATSR data analysis. To demonstrate the technique mosaic images were constructed from small areas of cloud-free infrared images of the sea surface as seen by the NOAA-9 AVHRR. Each area was approximately 55 km by 55 km and, by arranging them in order of decreasing mean temperature and increasing mean zenith angle, it was possible to use an image analysis system to compare the relative performance of different algorithms for deriving surface temperature. The images were also used to compare some NOAA-7 SST algorithms. A second set of mosaic images was constructed using NOAA-10 AVHRR data collected on the same night and for the same surface location. Images of SST derived with theoretical NOAA-10 algorithms were compared with those from an operational NOAA-9 algorithm. Then a simple optimization technique was used to obtain a new algorithm for deriving SST from channels 3 and 4 of the NOAA-10 instrument. This optimization scheme, using an ordered mosaic image that covers a wide range of conditions (location, local zenith angle, or some other parameter), should be applicable to the comparison and optimization of other satellite data products.
    publisherAmerican Meteorological Society
    titleComparison and Optimization of AVHRR Sea Surface Temperature Algorithms
    typeJournal Paper
    journal volume6
    journal issue6
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(1989)006<1083:CAOOAS>2.0.CO;2
    journal fristpage1083
    journal lastpage1089
    treeJournal of Atmospheric and Oceanic Technology:;1989:;volume( 006 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian