YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Indian Monsoon–ENSO Relationship on Interdecadal Timescale

    Source: Journal of Climate:;2000:;volume( 013 ):;issue: 003::page 579
    Author:
    Krishnamurthy, V.
    ,
    Goswami, B. N.
    DOI: 10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Empirical evidence is presented to support a hypothesis that the interdecadal variation of the Indian summer monsoon and that of the tropical SST are parts of a tropical coupled ocean?atmosphere mode. The interdecadal variation of the Indian monsoon rainfall (IMR) is strongly correlated with the interdecadal variations of various indices of El Niño?Southern Oscillation (ENSO). It is also shown that the interannual variances of both IMR and ENSO indices vary in phase and follow a common interdecadal variation. However, the correlation between IMR and eastern Pacific SST or between IMR and Southern Oscillation index (SOI) on the interannual timescale does not follow the interdecadal oscillation. The spatial patterns of SST and sea level pressure (SLP) associated with the interdecadal variation of IMR are nearly identical to those associated with the interdecadal variations of ENSO indices. As has been shown earlier in the case of ENSO, the global patterns associated with the interdecadal and interannual variability of the Indian monsoon are quite similar. The physical link through which ENSO is related to decreased monsoon rainfall on both interannual and interdecadal timescales has been investigated using National Centers for Environmental Prediction?National Center for Atmospheric Research reanalysis products. The decrease in the Indian monsoon rainfall associated with the warm phases of ENSO is due to an anomalous regional Hadley circulation with descending motion over the Indian continent and ascending motion near the equator sustained by the ascending phase of the anomalous Walker circulation in the equatorial Indian Ocean. It is shown that, to a large extent, both the regional Hadley circulation anomalies and Walker circulation anomalies over the monsoon region associated with the strong (weak) phases of the interdecadal oscillation are similar to those associated with the strong (weak) phases of the interannual variability. However, within a particular phase of the interdecadal oscillation, there are several strong and weak phases of the interannual variation. During a warm eastern Pacific phase of the interdecadal variation, the regional Hadley circulation associated with El Niño reinforces the prevailing anomalous interdecadal Hadley circulation while that associated with La Niña opposes the prevailing interdecadal Hadley circulation. During the warm phase of the interdecadal oscillation, El Niño events are expected to be strongly related to monsoon droughts while La Niña events may not have significant relation. On the other hand, during the cold eastern Pacific phase of the interdecadal SST oscillation, La Niña events are more likely to be strongly related to monsoon floods while El Niño events are unlikely to have a significant relation with the Indian monsoon. This picture explains the observation that the correlations between IMR and ENSO indices on the interannual timescale do not follow the interdecadal oscillation as neither phase of the interdecadal oscillation favors a stronger (or weaker) correlation between monsoon and ENSO indices.
    • Download: (477.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Indian Monsoon–ENSO Relationship on Interdecadal Timescale

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4193822
    Collections
    • Journal of Climate

    Show full item record

    contributor authorKrishnamurthy, V.
    contributor authorGoswami, B. N.
    date accessioned2017-06-09T15:48:11Z
    date available2017-06-09T15:48:11Z
    date copyright2000/02/01
    date issued2000
    identifier issn0894-8755
    identifier otherams-5388.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4193822
    description abstractEmpirical evidence is presented to support a hypothesis that the interdecadal variation of the Indian summer monsoon and that of the tropical SST are parts of a tropical coupled ocean?atmosphere mode. The interdecadal variation of the Indian monsoon rainfall (IMR) is strongly correlated with the interdecadal variations of various indices of El Niño?Southern Oscillation (ENSO). It is also shown that the interannual variances of both IMR and ENSO indices vary in phase and follow a common interdecadal variation. However, the correlation between IMR and eastern Pacific SST or between IMR and Southern Oscillation index (SOI) on the interannual timescale does not follow the interdecadal oscillation. The spatial patterns of SST and sea level pressure (SLP) associated with the interdecadal variation of IMR are nearly identical to those associated with the interdecadal variations of ENSO indices. As has been shown earlier in the case of ENSO, the global patterns associated with the interdecadal and interannual variability of the Indian monsoon are quite similar. The physical link through which ENSO is related to decreased monsoon rainfall on both interannual and interdecadal timescales has been investigated using National Centers for Environmental Prediction?National Center for Atmospheric Research reanalysis products. The decrease in the Indian monsoon rainfall associated with the warm phases of ENSO is due to an anomalous regional Hadley circulation with descending motion over the Indian continent and ascending motion near the equator sustained by the ascending phase of the anomalous Walker circulation in the equatorial Indian Ocean. It is shown that, to a large extent, both the regional Hadley circulation anomalies and Walker circulation anomalies over the monsoon region associated with the strong (weak) phases of the interdecadal oscillation are similar to those associated with the strong (weak) phases of the interannual variability. However, within a particular phase of the interdecadal oscillation, there are several strong and weak phases of the interannual variation. During a warm eastern Pacific phase of the interdecadal variation, the regional Hadley circulation associated with El Niño reinforces the prevailing anomalous interdecadal Hadley circulation while that associated with La Niña opposes the prevailing interdecadal Hadley circulation. During the warm phase of the interdecadal oscillation, El Niño events are expected to be strongly related to monsoon droughts while La Niña events may not have significant relation. On the other hand, during the cold eastern Pacific phase of the interdecadal SST oscillation, La Niña events are more likely to be strongly related to monsoon floods while El Niño events are unlikely to have a significant relation with the Indian monsoon. This picture explains the observation that the correlations between IMR and ENSO indices on the interannual timescale do not follow the interdecadal oscillation as neither phase of the interdecadal oscillation favors a stronger (or weaker) correlation between monsoon and ENSO indices.
    publisherAmerican Meteorological Society
    titleIndian Monsoon–ENSO Relationship on Interdecadal Timescale
    typeJournal Paper
    journal volume13
    journal issue3
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2
    journal fristpage579
    journal lastpage595
    treeJournal of Climate:;2000:;volume( 013 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian