contributor author | Vettoretti, G. | |
contributor author | Peltier, W. R. | |
contributor author | McFarlane, N. A. | |
date accessioned | 2017-06-09T15:41:09Z | |
date available | 2017-06-09T15:41:09Z | |
date copyright | 1998/10/01 | |
date issued | 1998 | |
identifier issn | 0894-8755 | |
identifier other | ams-5068.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4190267 | |
description abstract | The authors describe a first paleoclimatological application of the Canadian Centre for Climate Modelling and Analysis atmospheric general circulation model (AGCM) to simulate the climate state 6000 calendar years before present (6 kyr BP). Climate reconstructions for this period are performed with both fixed SSTs and with the AGCM coupled to mixed layer ocean and thermodynamic sea?ice modules. The most important difference between this epoch and the present involves the increased surface heating and cooling of the continental land masses in the Northern Hemisphere during summer and winter, respectively, which are a consequence of the modified orbital configuration. A comparison of a fixed SST experiment with a calculated SST experiment, incorporating a thermodynamic representation of oceanic response, is performed to assess the impact on the mid-Holocene climate. The results are also contrasted with those obtained on the basis of proxy climate reconstructions during this mid-Holocene optimum period. Of interest in this calculated SST experiment is the impact on the seasonal cycle of sea?ice distribution due to the increased insolation at high latitudes during Northern Hemisphere summer. Also important is the fact that the mixed layer ocean in the simulation is found to further enhance the monsoon circulation beyond the enhancement found to occur due to the influence of modified orbital forcing alone. This increased response is found to be a consequence of the sensitivity of tropical SST to the amplification of the seasonal cycle due to the change in insolation forcing that was characteristic of the mid-Holocene period. | |
publisher | American Meteorological Society | |
title | Simulations of Mid-Holocene Climate Using an Atmospheric General Circulation Model | |
type | Journal Paper | |
journal volume | 11 | |
journal issue | 10 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/1520-0442(1998)011<2607:SOMHCU>2.0.CO;2 | |
journal fristpage | 2607 | |
journal lastpage | 2627 | |
tree | Journal of Climate:;1998:;volume( 011 ):;issue: 010 | |
contenttype | Fulltext | |