YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Absorbing Aerosols on the Inference of Solar Surface Radiation Budget and Cloud Absorption

    Source: Journal of Climate:;1998:;volume( 011 ):;issue: 001::page 5
    Author:
    Li, Zhanqing
    DOI: 10.1175/1520-0442(1998)011<0005:IOAAOT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This study addresses the impact of absorbing aerosols on the retrieval of the solar surface radiation budget (SSRB) and on the inference of cloud absorption using multiple global datasets. The data pertain to the radiation budgets at the top of the atmosphere (TOA), at the surface, and to precipitation and tropical biomass burning. Satellite-based SSRB data were derived from the Earth Radiation Budget Experiment and the International Satellite Cloud Climatology Program using different inversion algorithms. A manifestation of the aerosol effect emerges from a zonal comparison between satellite-based and surface-observed SSRB, which shows good agreement in most regions except over the tropical continents active in biomass burning. Another indication arises from the variation of the ratio of cloud radiative forcing at the TOA and at the surface, which was used in many recent studies addressing the cloud absorption problem. The author?s studies showed that the ratio is around unity under most circumstances except when there is heavy urban/industrial pollution or fires. These exceptions register discrepancy between observed and modeled SSRB. The discrepancy is found to increase with decreasing cloudiness, implying that it has more to do with the treatment of aerosols than clouds, although minor influences by other factors may also exist. The largest discrepancy is observed in the month of minimal cloud cover and maximal aerosol loading. The corresponding maximum monthly mean aerosol optical thickness is estimated to be around 1.0 by a parameterization developed in this study. After the effects of aerosols on SSRB are accounted for using biomass burning and precipitation data, disagreements no longer exist between the theory and observation with regard to the transfer of solar radiation. It should be pointed out that the tropical data employed in this study are limited to a small number of continental sites.
    • Download: (176.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Absorbing Aerosols on the Inference of Solar Surface Radiation Budget and Cloud Absorption

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4188445
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLi, Zhanqing
    date accessioned2017-06-09T15:37:38Z
    date available2017-06-09T15:37:38Z
    date copyright1998/01/01
    date issued1998
    identifier issn0894-8755
    identifier otherams-4904.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4188445
    description abstractThis study addresses the impact of absorbing aerosols on the retrieval of the solar surface radiation budget (SSRB) and on the inference of cloud absorption using multiple global datasets. The data pertain to the radiation budgets at the top of the atmosphere (TOA), at the surface, and to precipitation and tropical biomass burning. Satellite-based SSRB data were derived from the Earth Radiation Budget Experiment and the International Satellite Cloud Climatology Program using different inversion algorithms. A manifestation of the aerosol effect emerges from a zonal comparison between satellite-based and surface-observed SSRB, which shows good agreement in most regions except over the tropical continents active in biomass burning. Another indication arises from the variation of the ratio of cloud radiative forcing at the TOA and at the surface, which was used in many recent studies addressing the cloud absorption problem. The author?s studies showed that the ratio is around unity under most circumstances except when there is heavy urban/industrial pollution or fires. These exceptions register discrepancy between observed and modeled SSRB. The discrepancy is found to increase with decreasing cloudiness, implying that it has more to do with the treatment of aerosols than clouds, although minor influences by other factors may also exist. The largest discrepancy is observed in the month of minimal cloud cover and maximal aerosol loading. The corresponding maximum monthly mean aerosol optical thickness is estimated to be around 1.0 by a parameterization developed in this study. After the effects of aerosols on SSRB are accounted for using biomass burning and precipitation data, disagreements no longer exist between the theory and observation with regard to the transfer of solar radiation. It should be pointed out that the tropical data employed in this study are limited to a small number of continental sites.
    publisherAmerican Meteorological Society
    titleInfluence of Absorbing Aerosols on the Inference of Solar Surface Radiation Budget and Cloud Absorption
    typeJournal Paper
    journal volume11
    journal issue1
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1998)011<0005:IOAAOT>2.0.CO;2
    journal fristpage5
    journal lastpage17
    treeJournal of Climate:;1998:;volume( 011 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian