YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mixed Boundary Conditions versus Coupling with an Energy–Moisture Balance Model for a Zonally Averaged Ocean Climate Model

    Source: Journal of Climate:;1997:;volume( 010 ):;issue: 010::page 2412
    Author:
    Bjornsson, H.
    ,
    Mysak, L. A.
    ,
    Schmidt, G. A.
    DOI: 10.1175/1520-0442(1997)010<2412:MBCVCW>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Wright and Stocker oceanic thermohaline circulation model is coupled to a recently developed zonally averaged energy moisture balance model for the atmosphere. The results obtained with this coupled model are compared with those from an ocean-only model that employs mixed boundary conditions. The ocean model geometry uses either one zonally averaged interhemispheric basin (the ?Atlantic?) or two zonally averaged basins (roughly approximating the Atlantic and the Pacific Oceans) connected by a parameterized Antarctic Circumpolar Current. The differences in the steady states and their linear stability are examined over a wide range of parameters. The presence of additional feedbacks between the ocean circulation and the atmosphere and hydrological cycle in the coupled model produces significant differences between the latter and the ocean-only model, in both the one-basin and two-basin geometries. The two models generally have different (though similar) equilibria and, most importantly for the issue of climate change, the variability in the models near similar steady states is quite different. In the one-basin case, three different steady states were found with both models, an unstable two-cell circulation with equatorial upwelling, and two stable states with a one-cell (pole-to-pole) circulation. In the one-cell states, there is an interhemispheric oceanic heat transport that cannot affect the implicit atmosphere under mixed boundary conditions, but which changes the surface air temperature in the coupled model, and which also leads to several feedbacks on the ocean circulation. Consequently, the corresponding states in the coupled model are different from those in the ocean-only model. In the two-basin case, five basic steady states were found in the ocean-only model: a state with two cells in both basins, a conveyor state, a reverse conveyor state, a state with northern sinking circulation in both basins, and a state with southern sinking in both basins. The state with southern sinking in both basins could not be found in the coupled model. In addition, two more steady states, each with a two-cell circulation in one basin and a one-cell circulation in the other, were found for both models during sensitivity tests. The bifurcation structures for the two models are very different, and also, the two-basin conveyor circulation is shown to be more stable to freshwater perturbations in the coupled model. The authors conclude that due to the effects produced by the feedbacks in the coupled model, they must have serious reservations about the results concerning long-term climate variability obtained from ocean-only models. Thus, to investigate long-term climatic variability a coupled model is necessary.
    • Download: (326.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mixed Boundary Conditions versus Coupling with an Energy–Moisture Balance Model for a Zonally Averaged Ocean Climate Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4187922
    Collections
    • Journal of Climate

    Show full item record

    contributor authorBjornsson, H.
    contributor authorMysak, L. A.
    contributor authorSchmidt, G. A.
    date accessioned2017-06-09T15:36:42Z
    date available2017-06-09T15:36:42Z
    date copyright1997/10/01
    date issued1997
    identifier issn0894-8755
    identifier otherams-4857.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4187922
    description abstractThe Wright and Stocker oceanic thermohaline circulation model is coupled to a recently developed zonally averaged energy moisture balance model for the atmosphere. The results obtained with this coupled model are compared with those from an ocean-only model that employs mixed boundary conditions. The ocean model geometry uses either one zonally averaged interhemispheric basin (the ?Atlantic?) or two zonally averaged basins (roughly approximating the Atlantic and the Pacific Oceans) connected by a parameterized Antarctic Circumpolar Current. The differences in the steady states and their linear stability are examined over a wide range of parameters. The presence of additional feedbacks between the ocean circulation and the atmosphere and hydrological cycle in the coupled model produces significant differences between the latter and the ocean-only model, in both the one-basin and two-basin geometries. The two models generally have different (though similar) equilibria and, most importantly for the issue of climate change, the variability in the models near similar steady states is quite different. In the one-basin case, three different steady states were found with both models, an unstable two-cell circulation with equatorial upwelling, and two stable states with a one-cell (pole-to-pole) circulation. In the one-cell states, there is an interhemispheric oceanic heat transport that cannot affect the implicit atmosphere under mixed boundary conditions, but which changes the surface air temperature in the coupled model, and which also leads to several feedbacks on the ocean circulation. Consequently, the corresponding states in the coupled model are different from those in the ocean-only model. In the two-basin case, five basic steady states were found in the ocean-only model: a state with two cells in both basins, a conveyor state, a reverse conveyor state, a state with northern sinking circulation in both basins, and a state with southern sinking in both basins. The state with southern sinking in both basins could not be found in the coupled model. In addition, two more steady states, each with a two-cell circulation in one basin and a one-cell circulation in the other, were found for both models during sensitivity tests. The bifurcation structures for the two models are very different, and also, the two-basin conveyor circulation is shown to be more stable to freshwater perturbations in the coupled model. The authors conclude that due to the effects produced by the feedbacks in the coupled model, they must have serious reservations about the results concerning long-term climate variability obtained from ocean-only models. Thus, to investigate long-term climatic variability a coupled model is necessary.
    publisherAmerican Meteorological Society
    titleMixed Boundary Conditions versus Coupling with an Energy–Moisture Balance Model for a Zonally Averaged Ocean Climate Model
    typeJournal Paper
    journal volume10
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1997)010<2412:MBCVCW>2.0.CO;2
    journal fristpage2412
    journal lastpage2430
    treeJournal of Climate:;1997:;volume( 010 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian