YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated

    Source: Journal of Climate:;1997:;volume( 010 ):;issue: 009::page 2147
    Author:
    Ebisuzaki, Wesley
    DOI: 10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: When analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussian distributions, few methods are available for data with nonzero autocorrelation (i.e., serially correlated). In this paper, a nonparametric method is suggested to estimate the statistical significance of a computed correlation coefficient when serial correlation is a concern. This method compares favorably with conventional methods.
    • Download: (143.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4187722
    Collections
    • Journal of Climate

    Show full item record

    contributor authorEbisuzaki, Wesley
    date accessioned2017-06-09T15:36:19Z
    date available2017-06-09T15:36:19Z
    date copyright1997/09/01
    date issued1997
    identifier issn0894-8755
    identifier otherams-4839.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4187722
    description abstractWhen analyzing pairs of time series, one often needs to know whether a correlation is statistically significant. If the data are Gaussian distributed and not serially correlated, one can use the results of classical statistics to estimate the significance. While some techniques can handle non-Gaussian distributions, few methods are available for data with nonzero autocorrelation (i.e., serially correlated). In this paper, a nonparametric method is suggested to estimate the statistical significance of a computed correlation coefficient when serial correlation is a concern. This method compares favorably with conventional methods.
    publisherAmerican Meteorological Society
    titleA Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated
    typeJournal Paper
    journal volume10
    journal issue9
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2
    journal fristpage2147
    journal lastpage2153
    treeJournal of Climate:;1997:;volume( 010 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian