YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Implications of Summertime Sea Level Pressure Anomalies in the Tropical Atlantic Region

    Source: Journal of Climate:;1997:;volume( 010 ):;issue: 004::page 789
    Author:
    Knaff, John A.
    DOI: 10.1175/1520-0442(1997)010<0789:IOSSLP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This study explores the inverse relationship between sea level pressure and tropical cyclones in the tropical Atlantic (TA). Upper-air observations, the National Centers for Environmental Prediction (formerly the National Meteorological Center)/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, and regional SSTs provide clues as to the physics of this relationship using composite and regression methods. Stratification of upper-air data by sea level pressure anomalies in the TA yields several interesting results, including anomalously high (low) pressure association with relatively dry (moist) middle levels, cooler (warmer) midlevel temperatures, and stronger (weaker) 200?850-mb vertical wind shears. The configuration of these composite wind differences suggests that higher summertime pressure in the TA is associated with an anomalously strong tropical upper tropospheric trough (TUTT) circulation. The observations show systematic association between the composite moisture, temperature, and wind differences. Studies of longwave sensitivity using a two stream model show that the moisture field dominates the longwave radiative cooling; hence, dry midlevels enhance cooling of the atmosphere. The effects of SST variations and tropical cyclones on TA pressure anomalies suggest that summertime pressure in this region is strongly influenced by additional (unresolved) climate forcings. These findings lead to a hypothesis that explains both the persistent nature of the summertime pressure (in the TA) as well as how variations of this pressure modulate the TUTT circulation strength. The hypothesis states that positive feedbacks operate between pressure/subsidence variations, midlevel moisture, and differential longwave radiative cooling that affects local baroclinicity (i.e., TUTT). When pressures are anomalously high, subsidence is greater and middle levels are dryer, resulting in increased atmospheric cooling to space and increased baroclinicity. Hence, pressure-related variations of both the midlevel moisture field and the TUTT circulation result in modulations of the upper-level winds and vertical wind shears in the TA. These, in turn, are found to be the primary cause of the observed pressure?tropical cyclone relationship; higher tropical Atlantic pressure results in an environment that is dryer and more sheared and, thus, less favorable for tropical cyclone formation and development.
    • Download: (700.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Implications of Summertime Sea Level Pressure Anomalies in the Tropical Atlantic Region

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4186800
    Collections
    • Journal of Climate

    Show full item record

    contributor authorKnaff, John A.
    date accessioned2017-06-09T15:34:37Z
    date available2017-06-09T15:34:37Z
    date copyright1997/04/01
    date issued1997
    identifier issn0894-8755
    identifier otherams-4756.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4186800
    description abstractThis study explores the inverse relationship between sea level pressure and tropical cyclones in the tropical Atlantic (TA). Upper-air observations, the National Centers for Environmental Prediction (formerly the National Meteorological Center)/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, and regional SSTs provide clues as to the physics of this relationship using composite and regression methods. Stratification of upper-air data by sea level pressure anomalies in the TA yields several interesting results, including anomalously high (low) pressure association with relatively dry (moist) middle levels, cooler (warmer) midlevel temperatures, and stronger (weaker) 200?850-mb vertical wind shears. The configuration of these composite wind differences suggests that higher summertime pressure in the TA is associated with an anomalously strong tropical upper tropospheric trough (TUTT) circulation. The observations show systematic association between the composite moisture, temperature, and wind differences. Studies of longwave sensitivity using a two stream model show that the moisture field dominates the longwave radiative cooling; hence, dry midlevels enhance cooling of the atmosphere. The effects of SST variations and tropical cyclones on TA pressure anomalies suggest that summertime pressure in this region is strongly influenced by additional (unresolved) climate forcings. These findings lead to a hypothesis that explains both the persistent nature of the summertime pressure (in the TA) as well as how variations of this pressure modulate the TUTT circulation strength. The hypothesis states that positive feedbacks operate between pressure/subsidence variations, midlevel moisture, and differential longwave radiative cooling that affects local baroclinicity (i.e., TUTT). When pressures are anomalously high, subsidence is greater and middle levels are dryer, resulting in increased atmospheric cooling to space and increased baroclinicity. Hence, pressure-related variations of both the midlevel moisture field and the TUTT circulation result in modulations of the upper-level winds and vertical wind shears in the TA. These, in turn, are found to be the primary cause of the observed pressure?tropical cyclone relationship; higher tropical Atlantic pressure results in an environment that is dryer and more sheared and, thus, less favorable for tropical cyclone formation and development.
    publisherAmerican Meteorological Society
    titleImplications of Summertime Sea Level Pressure Anomalies in the Tropical Atlantic Region
    typeJournal Paper
    journal volume10
    journal issue4
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1997)010<0789:IOSSLP>2.0.CO;2
    journal fristpage789
    journal lastpage804
    treeJournal of Climate:;1997:;volume( 010 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian