YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    GCM Simulations of Eastern Australian Cutoff Lows

    Source: Journal of Climate:;1996:;volume( 009 ):;issue: 010::page 2337
    Author:
    Katzfey, Jack J.
    ,
    Mcinnes, Kathleen L.
    DOI: 10.1175/1520-0442(1996)009<2337:GSOEAC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The ability of the CSIRO-9 General Circulation Model (GCM) to capture surface cutoff lows over eastern Australia is investigated by comparing composites of ten GCM cases with ten observed lows. The lows are also studied individually to compare their development and movement, as well as synoptic features, which may have been smoothed out in the compositing process. Finally, the incidence of all such lows in the 1 ? CO2 and 2 ? CO2 simulations are examined to determine the possible effects a doubling of CO2 will have on their occurrence. The GCM surface lows were found to develop from an upper-level cutoff low in a manner similar to the observed lows. In both sets, this development took place between the upper-level subtropical and polar jets in all seasons except summer, where only one jet was evident. Latent heat release appeared to play an important role in the intensification of the surface lows. The main difference between the two sets of cutoff lows was that the GCM surface lows tended to develop farther to the east of the upper-level cutoff, the upper-level features were less intense and occlusion did not take place. As a result, the GCM lows had a greater eastward translation compared to the observed lows, which often meander along the east coast for several days while they intensify. These features appear to be related to the low resolution of the GCM. The frequency of east Australian cutoff lows was underpredicted in the WM by about 45% in the 1 ? CO2 simulation, with the greatest underprediction occurring in autumn and winter. Analysis of upper-level jet structure indicated that the GCM produced a poor simulation of the dual jet structure aloft, which may account for this problem. The 2 ? CO2 simulation produced even fewer cutoff lows over eastern Australia. This was probably caused by the reduced baroclinicity due to increased warming of polar regions, which resulted in an even weaker dual jet structure. The cast Australian cutoff lows were found to be more intense in the 2 ? CO2 Simulation, suggesting the greater role played by latent heat effects once development has been initiated.
    • Download: (1.926Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      GCM Simulations of Eastern Australian Cutoff Lows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4185378
    Collections
    • Journal of Climate

    Show full item record

    contributor authorKatzfey, Jack J.
    contributor authorMcinnes, Kathleen L.
    date accessioned2017-06-09T15:31:57Z
    date available2017-06-09T15:31:57Z
    date copyright1996/10/01
    date issued1996
    identifier issn0894-8755
    identifier otherams-4628.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4185378
    description abstractThe ability of the CSIRO-9 General Circulation Model (GCM) to capture surface cutoff lows over eastern Australia is investigated by comparing composites of ten GCM cases with ten observed lows. The lows are also studied individually to compare their development and movement, as well as synoptic features, which may have been smoothed out in the compositing process. Finally, the incidence of all such lows in the 1 ? CO2 and 2 ? CO2 simulations are examined to determine the possible effects a doubling of CO2 will have on their occurrence. The GCM surface lows were found to develop from an upper-level cutoff low in a manner similar to the observed lows. In both sets, this development took place between the upper-level subtropical and polar jets in all seasons except summer, where only one jet was evident. Latent heat release appeared to play an important role in the intensification of the surface lows. The main difference between the two sets of cutoff lows was that the GCM surface lows tended to develop farther to the east of the upper-level cutoff, the upper-level features were less intense and occlusion did not take place. As a result, the GCM lows had a greater eastward translation compared to the observed lows, which often meander along the east coast for several days while they intensify. These features appear to be related to the low resolution of the GCM. The frequency of east Australian cutoff lows was underpredicted in the WM by about 45% in the 1 ? CO2 simulation, with the greatest underprediction occurring in autumn and winter. Analysis of upper-level jet structure indicated that the GCM produced a poor simulation of the dual jet structure aloft, which may account for this problem. The 2 ? CO2 simulation produced even fewer cutoff lows over eastern Australia. This was probably caused by the reduced baroclinicity due to increased warming of polar regions, which resulted in an even weaker dual jet structure. The cast Australian cutoff lows were found to be more intense in the 2 ? CO2 Simulation, suggesting the greater role played by latent heat effects once development has been initiated.
    publisherAmerican Meteorological Society
    titleGCM Simulations of Eastern Australian Cutoff Lows
    typeJournal Paper
    journal volume9
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1996)009<2337:GSOEAC>2.0.CO;2
    journal fristpage2337
    journal lastpage2355
    treeJournal of Climate:;1996:;volume( 009 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian