YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Impact of Desertification in the Mongolian and the Inner Mongolian Grassland on the Regional Climate

    Source: Journal of Climate:;1996:;volume( 009 ):;issue: 009::page 2173
    Author:
    Xue, Yongkang
    DOI: 10.1175/1520-0442(1996)009<2173:TIODIT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This is an investigation of the impact of and mechanisms for biosphere feedback in the northeast Asian grassland on the regional climate. Desertification in the Inner Mongolian grassland has dramatically increased during the past 40 years. The Center for Ocean-Land-Atmosphere Studies atmospheric general circulation model, which includes a biosphere model, was used to test the impact of this desertification. In the grassland experiment, areas of Mongolia and Inner Mongolia were specified as grassland. In the desertification experiment, these areas were specified as desert. Each experiment consists of six integrations with different atmospheric initial conditions and different specifications of the extent of the desertification area. All integrations were 90 days in length, beginning in early June and continuing through August, coincident with the period of the East Asian summer monsoon. The desertification had a significant impact on the simulated climate. During the past 40 years, the observed rainfall has decreased in northern and southern China but increased in central China, and the Inner Mongolian grassland and northern China have become warmer. The simulated rainfall and surface temperature differences between the desertification integrations and the grassland integrations are consistent with these observed changes. The water balance and surface energy balance were altered by the desertification. The reduction in evaporation in the desertification experiment dominated the changes in the local surface energy budget. The reduction in convective latent beating above the surface layer enhanced sinking motion (or weakened rising motion) over the desertification area and over the adjacent area to the south. Coincidentally, the monsoon circulation was weakened and the rainfall was reduced.
    • Download: (1.288Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Impact of Desertification in the Mongolian and the Inner Mongolian Grassland on the Regional Climate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4185234
    Collections
    • Journal of Climate

    Show full item record

    contributor authorXue, Yongkang
    date accessioned2017-06-09T15:31:41Z
    date available2017-06-09T15:31:41Z
    date copyright1996/09/01
    date issued1996
    identifier issn0894-8755
    identifier otherams-4615.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4185234
    description abstractThis is an investigation of the impact of and mechanisms for biosphere feedback in the northeast Asian grassland on the regional climate. Desertification in the Inner Mongolian grassland has dramatically increased during the past 40 years. The Center for Ocean-Land-Atmosphere Studies atmospheric general circulation model, which includes a biosphere model, was used to test the impact of this desertification. In the grassland experiment, areas of Mongolia and Inner Mongolia were specified as grassland. In the desertification experiment, these areas were specified as desert. Each experiment consists of six integrations with different atmospheric initial conditions and different specifications of the extent of the desertification area. All integrations were 90 days in length, beginning in early June and continuing through August, coincident with the period of the East Asian summer monsoon. The desertification had a significant impact on the simulated climate. During the past 40 years, the observed rainfall has decreased in northern and southern China but increased in central China, and the Inner Mongolian grassland and northern China have become warmer. The simulated rainfall and surface temperature differences between the desertification integrations and the grassland integrations are consistent with these observed changes. The water balance and surface energy balance were altered by the desertification. The reduction in evaporation in the desertification experiment dominated the changes in the local surface energy budget. The reduction in convective latent beating above the surface layer enhanced sinking motion (or weakened rising motion) over the desertification area and over the adjacent area to the south. Coincidentally, the monsoon circulation was weakened and the rainfall was reduced.
    publisherAmerican Meteorological Society
    titleThe Impact of Desertification in the Mongolian and the Inner Mongolian Grassland on the Regional Climate
    typeJournal Paper
    journal volume9
    journal issue9
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1996)009<2173:TIODIT>2.0.CO;2
    journal fristpage2173
    journal lastpage2189
    treeJournal of Climate:;1996:;volume( 009 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian