YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quasi-Stationary Waves in the Southern Hemisphere. Part II: Generation Mechanisms

    Source: Journal of Climate:;1995:;volume( 008 ):;issue: 011::page 2673
    Author:
    Quintanar, Arturo I.
    ,
    Mechoso, Carlos R.
    DOI: 10.1175/1520-0442(1995)008<2673:QSWITS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this Part II the authors investigate the role that Antarctic elevations, the rest of the world orography, thermal forcing from lower latitudes, and the transient eddy component of the flow play on the generation of the quasi-stationary wave field in the Southern Hemisphere. An approach based on the UCLA GCM is followed. Results from a control simulation with full orography and from experiments without the Antarctic elevations and without the rest of the world orography, suggest that the quasi-stationary wave with zonal wavenumber 1 (QS-wave 1) around Antarctica is primarily generated by mechanisms other than the Antarctic elevations. Comparison of a three-dimensional Eliassen-Palm flux vector in the control simulation, and those where the Antarctic elevation and the rest of the world orography are removed, suggests that wave activity propagates both from the subtropics and from polar latitudes. Although in qualitative agreement with results of Part I, the horizontal and vertical structure of these remote forcings is different in the simulations where a more barotropic wave train is generated from lower and polar latitudes. Antarctica is indeed a source of wave activity but unlike observations it is confined to polar regions at tropospheric levels. Additional evidence of thermal forcing was found in an experiment without orographic elevations and zonal asymmetries south of 45°S. It is found that QS-wave 2 is most affected by the zonal asymmetries in sea ice and SST. The effects of the transient component of the flow were also analyzed. The heat transport by the transient eddies in the absence of Antarctic elevations is greater than in the control simulation consistent with a warming of the polar region. Analysis of the contribution by the low-pass and high-pass transients to QS-wave 1 in the control simulation reveals a very different behavior than in Part I. In the control simulation, the low-pass transients and QS-wave 1 are mostly in opposition of phase. High-frequency transients are uncorrelated with QS-wave 1 in all cases. In the experiments without Antarctic elevations or the rest of the world orography, low-pass transients are in phase with QS-wave 1 over high and polar latitudes. In summary, the results of this study suggest that the generation of QS-wave 1 at high latitudes is predominantly from lower latitudes.
    • Download: (1.741Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quasi-Stationary Waves in the Southern Hemisphere. Part II: Generation Mechanisms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4183434
    Collections
    • Journal of Climate

    Show full item record

    contributor authorQuintanar, Arturo I.
    contributor authorMechoso, Carlos R.
    date accessioned2017-06-09T15:27:59Z
    date available2017-06-09T15:27:59Z
    date copyright1995/11/01
    date issued1995
    identifier issn0894-8755
    identifier otherams-4453.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4183434
    description abstractIn this Part II the authors investigate the role that Antarctic elevations, the rest of the world orography, thermal forcing from lower latitudes, and the transient eddy component of the flow play on the generation of the quasi-stationary wave field in the Southern Hemisphere. An approach based on the UCLA GCM is followed. Results from a control simulation with full orography and from experiments without the Antarctic elevations and without the rest of the world orography, suggest that the quasi-stationary wave with zonal wavenumber 1 (QS-wave 1) around Antarctica is primarily generated by mechanisms other than the Antarctic elevations. Comparison of a three-dimensional Eliassen-Palm flux vector in the control simulation, and those where the Antarctic elevation and the rest of the world orography are removed, suggests that wave activity propagates both from the subtropics and from polar latitudes. Although in qualitative agreement with results of Part I, the horizontal and vertical structure of these remote forcings is different in the simulations where a more barotropic wave train is generated from lower and polar latitudes. Antarctica is indeed a source of wave activity but unlike observations it is confined to polar regions at tropospheric levels. Additional evidence of thermal forcing was found in an experiment without orographic elevations and zonal asymmetries south of 45°S. It is found that QS-wave 2 is most affected by the zonal asymmetries in sea ice and SST. The effects of the transient component of the flow were also analyzed. The heat transport by the transient eddies in the absence of Antarctic elevations is greater than in the control simulation consistent with a warming of the polar region. Analysis of the contribution by the low-pass and high-pass transients to QS-wave 1 in the control simulation reveals a very different behavior than in Part I. In the control simulation, the low-pass transients and QS-wave 1 are mostly in opposition of phase. High-frequency transients are uncorrelated with QS-wave 1 in all cases. In the experiments without Antarctic elevations or the rest of the world orography, low-pass transients are in phase with QS-wave 1 over high and polar latitudes. In summary, the results of this study suggest that the generation of QS-wave 1 at high latitudes is predominantly from lower latitudes.
    publisherAmerican Meteorological Society
    titleQuasi-Stationary Waves in the Southern Hemisphere. Part II: Generation Mechanisms
    typeJournal Paper
    journal volume8
    journal issue11
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1995)008<2673:QSWITS>2.0.CO;2
    journal fristpage2673
    journal lastpage2690
    treeJournal of Climate:;1995:;volume( 008 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian