YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Surface Albedo–Climate Feedback Simulated Using Two-Way Coupling

    Source: Journal of Climate:;1995:;volume( 008 ):;issue: 010::page 2543
    Author:
    Lofgren, Brent M.
    DOI: 10.1175/1520-0442(1995)008<2543:SAFSUT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: To simulate the effects of feedback between climate and surface albedo via vegetation, a scheme was developed, based on a generalized life zone scheme, for estimating the land surface albedo as a function of annual mean precipitation and surface temperature. This scheme was applied to the climate of a GCM and made interactive with the GCM. The climate of this run was compared with one in which the land surface albedo was prescribed to a spatially uniform value. Allowing such feedback within the modeling system enhances the atmospheric ascent and heavy precipitation of tropical rainbelts, in comparison with a case with spatially homogeneous surface albedo prescribed. It also intensifies the atmospheric descent and low precipitation rates over subtropical latitudes. That is, a positive feedback occurs at low latitudes. At midlatitudes, thermal forcing due to the spatial distribution of surface albedo has little effect on vertical motion or precipitation. However, in the Central Asian and Gobi Deserts, the high surface albedo cools the surface, reduces evaporative demand, and allows the soil and vegetation to retain more moisture, indicating negative feedback. Because the northern edge of the Sahara has negative feedback similar to that in midlatitudes, while the southern part has positive feedback, the Sahara as a whole is shifted southward when surface albedo feedback is included.
    • Download: (1.744Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Surface Albedo–Climate Feedback Simulated Using Two-Way Coupling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4183323
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLofgren, Brent M.
    date accessioned2017-06-09T15:27:47Z
    date available2017-06-09T15:27:47Z
    date copyright1995/10/01
    date issued1995
    identifier issn0894-8755
    identifier otherams-4443.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4183323
    description abstractTo simulate the effects of feedback between climate and surface albedo via vegetation, a scheme was developed, based on a generalized life zone scheme, for estimating the land surface albedo as a function of annual mean precipitation and surface temperature. This scheme was applied to the climate of a GCM and made interactive with the GCM. The climate of this run was compared with one in which the land surface albedo was prescribed to a spatially uniform value. Allowing such feedback within the modeling system enhances the atmospheric ascent and heavy precipitation of tropical rainbelts, in comparison with a case with spatially homogeneous surface albedo prescribed. It also intensifies the atmospheric descent and low precipitation rates over subtropical latitudes. That is, a positive feedback occurs at low latitudes. At midlatitudes, thermal forcing due to the spatial distribution of surface albedo has little effect on vertical motion or precipitation. However, in the Central Asian and Gobi Deserts, the high surface albedo cools the surface, reduces evaporative demand, and allows the soil and vegetation to retain more moisture, indicating negative feedback. Because the northern edge of the Sahara has negative feedback similar to that in midlatitudes, while the southern part has positive feedback, the Sahara as a whole is shifted southward when surface albedo feedback is included.
    publisherAmerican Meteorological Society
    titleSurface Albedo–Climate Feedback Simulated Using Two-Way Coupling
    typeJournal Paper
    journal volume8
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1995)008<2543:SAFSUT>2.0.CO;2
    journal fristpage2543
    journal lastpage2562
    treeJournal of Climate:;1995:;volume( 008 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian