YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Satellite Analysis of Deep Convection, Upper-Tropospheric Humidity, and the Greenhouse Effect

    Source: Journal of Climate:;1995:;volume( 008 ):;issue: 010::page 2333
    Author:
    Soden, Brian J.
    ,
    Fu, Rong
    DOI: 10.1175/1520-0442(1995)008<2333:ASAODC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This paper combines satellite measurements of the upwelling 6.7-?m radiance from TOVS with cloud-property information from ISCCP and outgoing longwave radiative fluxes from ERBE to analyze the climatological interactions between deep convection, upper-tropospheric humidity, and atmospheric greenhouse trapping. The satellite instruments provide unmatched spatial and temporal coverage, enabling detailed examination of regional, seasonal, and interannual variations between these quantities. The present analysis demonstrates that enhanced tropical convection is associated with increased upper-tropospheric relative humidity. The positive relationship between deep convection and upper-tropospheric humidity is observed for both regional and temporal variations, and is also demonstrated to occur over a wide range of space and time scales. Analysis of ERBE outgoing longwave radiation measurements indicates that regions or periods of increased upper-tropospheric moisture are strongly correlated with an enhanced greenhouse trapping, although the effects of lower-tropospheric moisture and temperature lapse rate are also observed to be important. The combined results for the Tropics provide a picture consistent with a positive interrelationship between deep convection, upper-tropospheric humidity, and the greenhouse effect. In extratropical regions, temporal variations in upper-tropospheric humidity exhibit little relationship to variations in deep convection, suggesting the importance of other dynamical processes in determining changes in upper-tropospheric moisture for this region. Comparison of the observed relationships between convection, upper-tropospheric moisture, and greenhouse trapping with climate model simulations indicates that the Geophysical Fluid Dynamics Laboratory (GFDL) GCM is qualitatively successful in capturing the observed relationship between these quantities. This evidence supports the ability of the GFDL GCM to predict upper-tropospheric water vapor feedback, despite the model's relatively simplified treatment of moist convective processes.
    • Download: (1.946Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Satellite Analysis of Deep Convection, Upper-Tropospheric Humidity, and the Greenhouse Effect

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4183201
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSoden, Brian J.
    contributor authorFu, Rong
    date accessioned2017-06-09T15:27:33Z
    date available2017-06-09T15:27:33Z
    date copyright1995/10/01
    date issued1995
    identifier issn0894-8755
    identifier otherams-4432.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4183201
    description abstractThis paper combines satellite measurements of the upwelling 6.7-?m radiance from TOVS with cloud-property information from ISCCP and outgoing longwave radiative fluxes from ERBE to analyze the climatological interactions between deep convection, upper-tropospheric humidity, and atmospheric greenhouse trapping. The satellite instruments provide unmatched spatial and temporal coverage, enabling detailed examination of regional, seasonal, and interannual variations between these quantities. The present analysis demonstrates that enhanced tropical convection is associated with increased upper-tropospheric relative humidity. The positive relationship between deep convection and upper-tropospheric humidity is observed for both regional and temporal variations, and is also demonstrated to occur over a wide range of space and time scales. Analysis of ERBE outgoing longwave radiation measurements indicates that regions or periods of increased upper-tropospheric moisture are strongly correlated with an enhanced greenhouse trapping, although the effects of lower-tropospheric moisture and temperature lapse rate are also observed to be important. The combined results for the Tropics provide a picture consistent with a positive interrelationship between deep convection, upper-tropospheric humidity, and the greenhouse effect. In extratropical regions, temporal variations in upper-tropospheric humidity exhibit little relationship to variations in deep convection, suggesting the importance of other dynamical processes in determining changes in upper-tropospheric moisture for this region. Comparison of the observed relationships between convection, upper-tropospheric moisture, and greenhouse trapping with climate model simulations indicates that the Geophysical Fluid Dynamics Laboratory (GFDL) GCM is qualitatively successful in capturing the observed relationship between these quantities. This evidence supports the ability of the GFDL GCM to predict upper-tropospheric water vapor feedback, despite the model's relatively simplified treatment of moist convective processes.
    publisherAmerican Meteorological Society
    titleA Satellite Analysis of Deep Convection, Upper-Tropospheric Humidity, and the Greenhouse Effect
    typeJournal Paper
    journal volume8
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1995)008<2333:ASAODC>2.0.CO;2
    journal fristpage2333
    journal lastpage2351
    treeJournal of Climate:;1995:;volume( 008 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian