YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Total Cloudiness and Its Variability in the Atmospheric Model Intercomparison Project

    Source: Journal of Climate:;1995:;volume( 008 ):;issue: 009::page 2224
    Author:
    Weare, Bryan C.
    ,
    Mokhov, Igor I.
    DOI: 10.1175/1520-0442(1995)008<2224:EOTCAI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Total cloudiness of 29 models participating in the Atmospheric Model Intercomparison Project is compared with the ISCCP C2 as well as the Nimbus-7 and Meteor observational estimates. The root-mean-square differences between the annual means of the model calculations and the C2 observations after global means are removed vary from about twice to nearly four times the difference between the C2 and Meteor observations. The large differences are in some cases due to the fact that although a model qualitatively has patterns of spatial variations similar to those of the observations, the magnitude of those variations is much too small. In other cases the models have produced the approximate magnitude of the spatial variability of the observations but display sizable errors in the pattern of that variability. Deficiencies with respect to the model simulations of the mean seasonal cycle are also pronounced. For instance, the differences between the zonal averages of total cloudiness for contrasting seasons suggest that near 60° most models predict minima in cloudiness in summer, whereas observations strongly suggest the opposite. In addition, smoothed seasonal cycle analyses suggest that a portion of these deficiencies in some models is the result of a simulated seasonal cycle that leads that of the observations by about two months. However, some models, which appear to have the proper phase of the seasonal cycle, still show large root-mean-square differences and small correlations when compared with the smoothed seasonal cycle of the C2 observations. The C2 and Meteor observations show a modest signal in total cloudiness for the only important interannual variation during the July 1983 through June 1988 observation period?the 1986/87 ENSO event. A few models reproduce this event about as well as do the Meteor observations, whereas many models fail to show any evidence of it. Overall, models that better reproduce the ENSO results also tend to do well with seasonal variations. No specific differences are evident in the physical characteristics of models that are relatively adept at reproducing seasonal and interannual variations and those that perform more poorly. However, there is the general conclusion that models that have more sophisticated physical processes tend to better simulate the cloud observations.
    • Download: (2.295Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Total Cloudiness and Its Variability in the Atmospheric Model Intercomparison Project

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4183134
    Collections
    • Journal of Climate

    Show full item record

    contributor authorWeare, Bryan C.
    contributor authorMokhov, Igor I.
    date accessioned2017-06-09T15:27:25Z
    date available2017-06-09T15:27:25Z
    date copyright1995/09/01
    date issued1995
    identifier issn0894-8755
    identifier otherams-4426.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4183134
    description abstractTotal cloudiness of 29 models participating in the Atmospheric Model Intercomparison Project is compared with the ISCCP C2 as well as the Nimbus-7 and Meteor observational estimates. The root-mean-square differences between the annual means of the model calculations and the C2 observations after global means are removed vary from about twice to nearly four times the difference between the C2 and Meteor observations. The large differences are in some cases due to the fact that although a model qualitatively has patterns of spatial variations similar to those of the observations, the magnitude of those variations is much too small. In other cases the models have produced the approximate magnitude of the spatial variability of the observations but display sizable errors in the pattern of that variability. Deficiencies with respect to the model simulations of the mean seasonal cycle are also pronounced. For instance, the differences between the zonal averages of total cloudiness for contrasting seasons suggest that near 60° most models predict minima in cloudiness in summer, whereas observations strongly suggest the opposite. In addition, smoothed seasonal cycle analyses suggest that a portion of these deficiencies in some models is the result of a simulated seasonal cycle that leads that of the observations by about two months. However, some models, which appear to have the proper phase of the seasonal cycle, still show large root-mean-square differences and small correlations when compared with the smoothed seasonal cycle of the C2 observations. The C2 and Meteor observations show a modest signal in total cloudiness for the only important interannual variation during the July 1983 through June 1988 observation period?the 1986/87 ENSO event. A few models reproduce this event about as well as do the Meteor observations, whereas many models fail to show any evidence of it. Overall, models that better reproduce the ENSO results also tend to do well with seasonal variations. No specific differences are evident in the physical characteristics of models that are relatively adept at reproducing seasonal and interannual variations and those that perform more poorly. However, there is the general conclusion that models that have more sophisticated physical processes tend to better simulate the cloud observations.
    publisherAmerican Meteorological Society
    titleEvaluation of Total Cloudiness and Its Variability in the Atmospheric Model Intercomparison Project
    typeJournal Paper
    journal volume8
    journal issue9
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1995)008<2224:EOTCAI>2.0.CO;2
    journal fristpage2224
    journal lastpage2238
    treeJournal of Climate:;1995:;volume( 008 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian