YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Competition of Freshwater and Radiation in Forcing the Ocean during El Niño

    Source: Journal of Climate:;1995:;volume( 008 ):;issue: 005::page 980
    Author:
    Schneider, Niklas
    ,
    Barnett, Tim P.
    DOI: 10.1175/1520-0442(1995)008<0980:TCOFAR>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The relative roles of heat and freshwater fluxes in forcing the tropical Pacific on interannual timescales are investigated using sophisticated atmospheric and oceanic general circulation models. Interannual density flux anomalies due to anomalous precipitation and shortwave and longwave radiation are highly correlated since they all depend on clouds. Their respective contributions to the anomalous surface density flux are of comparable magnitude, with precipitation and longwave anomalies opposing shortwave radiation. This implies that anomalous radiation and precipitation associated with the eastward shift of the centers of deep convection during El Niño change the density flux little since they largely balance. This near cancellation also causes the evaporative component to dominate interannual anomalies of the density flux in the eastern Pacific and in the Indian Ocean and implies that anomalous net surface density fluxes there can be approximated by anomalous evaporation alone. However, in the central and western Pacific, evaporative anomalies are negatively correlated to shortwave anomalies as well, and interannual anomalies of the net density flux are therefore small and deviate considerably from the evaporative component alone. Forcing an oceanic circulation model with the interannual anomalies of the fluxes of heat and freshwater alone yields salinity and temperature anomalies of the same order as observed. Model salinity anomalies explain approximately half of the observations, while temperature anomalies have reversed signs compared to observations. This reflects the negative feedback between surface heat fluxes and the warming caused by interannual anomalies of the wind not included in this simulation. Over most of the tropical ocean, interannual anomalies of surface density are dominated by temperature anomalies. In the central Pacific, salinity anomalies diminish up to half of the effect of temperature. Anomalies of the velocity fields due to interannual anomalies of the surface heat and freshwater fluxes are largest in the eastern equatorial ocean, where the thermocline is shallow and anomalies of the surface flux have the largest impact on vertical mixing.
    • Download: (1.651Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Competition of Freshwater and Radiation in Forcing the Ocean during El Niño

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4182134
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSchneider, Niklas
    contributor authorBarnett, Tim P.
    date accessioned2017-06-09T15:25:33Z
    date available2017-06-09T15:25:33Z
    date copyright1995/05/01
    date issued1995
    identifier issn0894-8755
    identifier otherams-4336.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4182134
    description abstractThe relative roles of heat and freshwater fluxes in forcing the tropical Pacific on interannual timescales are investigated using sophisticated atmospheric and oceanic general circulation models. Interannual density flux anomalies due to anomalous precipitation and shortwave and longwave radiation are highly correlated since they all depend on clouds. Their respective contributions to the anomalous surface density flux are of comparable magnitude, with precipitation and longwave anomalies opposing shortwave radiation. This implies that anomalous radiation and precipitation associated with the eastward shift of the centers of deep convection during El Niño change the density flux little since they largely balance. This near cancellation also causes the evaporative component to dominate interannual anomalies of the density flux in the eastern Pacific and in the Indian Ocean and implies that anomalous net surface density fluxes there can be approximated by anomalous evaporation alone. However, in the central and western Pacific, evaporative anomalies are negatively correlated to shortwave anomalies as well, and interannual anomalies of the net density flux are therefore small and deviate considerably from the evaporative component alone. Forcing an oceanic circulation model with the interannual anomalies of the fluxes of heat and freshwater alone yields salinity and temperature anomalies of the same order as observed. Model salinity anomalies explain approximately half of the observations, while temperature anomalies have reversed signs compared to observations. This reflects the negative feedback between surface heat fluxes and the warming caused by interannual anomalies of the wind not included in this simulation. Over most of the tropical ocean, interannual anomalies of surface density are dominated by temperature anomalies. In the central Pacific, salinity anomalies diminish up to half of the effect of temperature. Anomalies of the velocity fields due to interannual anomalies of the surface heat and freshwater fluxes are largest in the eastern equatorial ocean, where the thermocline is shallow and anomalies of the surface flux have the largest impact on vertical mixing.
    publisherAmerican Meteorological Society
    titleThe Competition of Freshwater and Radiation in Forcing the Ocean during El Niño
    typeJournal Paper
    journal volume8
    journal issue5
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1995)008<0980:TCOFAR>2.0.CO;2
    journal fristpage980
    journal lastpage992
    treeJournal of Climate:;1995:;volume( 008 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian