YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Climatic Regimes of Tropical Convection and Rainfall

    Source: Journal of Climate:;1994:;volume( 007 ):;issue: 007::page 1109
    Author:
    Wang, Bin
    DOI: 10.1175/1520-0442(1994)007<1109:CROTCA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Annual distribution and phase propagation of tropical convection are delineated using harmonic and amplitude-phase characteristics analysis of climatological pentad mean outgoing longwave radiation and monthly frequencies of highly reflective cloud. An annual eastward propagation of peak rainy season along the equator from the central Indian Ocean (60°E) to Arafura Sea (130°E) is revealed. This indicates a transition from the withdrawal of the Indian summer monsoon to the onset of the Australian summer monsoon. Significant bimodal variations are found around major summer monsoon regions. These variations originate from the interference of two adjacent regimes. The convergence zones over the eastern North Pacific, the South Pacific, and the southwest Indian Ocean are identified as a marine monsoon regime that is characterized by a unimodal variation with a concentrated summer rainfall associated with the development of surface westerlies equatorward of a monsoon trough. Conversely, the central North Pacific and North Atlantic convergence zones between persistent northeast and southeast trades are classified as trade-wind convergence zones, which differ from the marine monsoon regime by their persistent rainy season and characteristic bimodal variation with peak rainy seasons occurring in late spring and fall. The roles of the annual march of sea surface temperature in the phase propagation and formation of various climatic regimes of tropical convection are also discussed.
    • Download: (1.026Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Climatic Regimes of Tropical Convection and Rainfall

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4180712
    Collections
    • Journal of Climate

    Show full item record

    contributor authorWang, Bin
    date accessioned2017-06-09T15:22:45Z
    date available2017-06-09T15:22:45Z
    date copyright1994/07/01
    date issued1994
    identifier issn0894-8755
    identifier otherams-4208.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4180712
    description abstractAnnual distribution and phase propagation of tropical convection are delineated using harmonic and amplitude-phase characteristics analysis of climatological pentad mean outgoing longwave radiation and monthly frequencies of highly reflective cloud. An annual eastward propagation of peak rainy season along the equator from the central Indian Ocean (60°E) to Arafura Sea (130°E) is revealed. This indicates a transition from the withdrawal of the Indian summer monsoon to the onset of the Australian summer monsoon. Significant bimodal variations are found around major summer monsoon regions. These variations originate from the interference of two adjacent regimes. The convergence zones over the eastern North Pacific, the South Pacific, and the southwest Indian Ocean are identified as a marine monsoon regime that is characterized by a unimodal variation with a concentrated summer rainfall associated with the development of surface westerlies equatorward of a monsoon trough. Conversely, the central North Pacific and North Atlantic convergence zones between persistent northeast and southeast trades are classified as trade-wind convergence zones, which differ from the marine monsoon regime by their persistent rainy season and characteristic bimodal variation with peak rainy seasons occurring in late spring and fall. The roles of the annual march of sea surface temperature in the phase propagation and formation of various climatic regimes of tropical convection are also discussed.
    publisherAmerican Meteorological Society
    titleClimatic Regimes of Tropical Convection and Rainfall
    typeJournal Paper
    journal volume7
    journal issue7
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1994)007<1109:CROTCA>2.0.CO;2
    journal fristpage1109
    journal lastpage1118
    treeJournal of Climate:;1994:;volume( 007 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian