YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diurnal Heating and Cloudiness in the NCAR Community Climate Model (CCM2)

    Source: Journal of Climate:;1994:;volume( 007 ):;issue: 006::page 869
    Author:
    Lieberman, Ruth S.
    ,
    Leovy, Conway B.
    ,
    Boville, Byron A.
    ,
    Briegleb, Bruce P.
    DOI: 10.1175/1520-0442(1994)007<0869:DHACIT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this paper, the authors assess the suitability of the heating fields in the latest version of the NCAR Community Climate Model (CCM2) for modeling the thermal forcing of atmospheric tides. Accordingly, diurnal variations of the surface pressure, outgoing longwave radiation, cloudiness, and precipitation are examined in the CCM2. The fields of radiative, sensible, and latent beating are similarly analyzed. These results are subjectively compared with available data. Equatorial diurnal surface pressure tides are fairly well simulated by CCM2. The model successfully reproduces the semidiurnal surface pressure tides; however, this may result in part from reflection of wave energy at the upper boundary. The CCM2 large-scale diurnal OLR is generally consistent with observations. The moist-convective scheme in the model is able to reproduce the diurnally varying cloudiness and precipitation patterns associated with land-sea contrasts; however, the amplitudes of CCM2 diurnal continental convective cloudiness are weaker than observations. The CCM2 boundary-layer sensible heating is consistent with a very limited set of observations, and with estimates obtained from simple models of diffusive heating. Although the CCM2 tropospheric solar radiative heating is similar in magnitude to previous estimates, there are substantial differences in the vertical structures. A definitive assessment of the validity of the CCM2 diurnal cycle is precluded by the lack of detailed observations and the limitations of our CCM2 sample. Nevertheless, the authors conclude that the global-scale components of the CCM2 diurnal heating are useful proxies for the true diurnal forcing of the tides.
    • Download: (1.386Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diurnal Heating and Cloudiness in the NCAR Community Climate Model (CCM2)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4180534
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLieberman, Ruth S.
    contributor authorLeovy, Conway B.
    contributor authorBoville, Byron A.
    contributor authorBriegleb, Bruce P.
    date accessioned2017-06-09T15:22:25Z
    date available2017-06-09T15:22:25Z
    date copyright1994/06/01
    date issued1994
    identifier issn0894-8755
    identifier otherams-4192.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4180534
    description abstractIn this paper, the authors assess the suitability of the heating fields in the latest version of the NCAR Community Climate Model (CCM2) for modeling the thermal forcing of atmospheric tides. Accordingly, diurnal variations of the surface pressure, outgoing longwave radiation, cloudiness, and precipitation are examined in the CCM2. The fields of radiative, sensible, and latent beating are similarly analyzed. These results are subjectively compared with available data. Equatorial diurnal surface pressure tides are fairly well simulated by CCM2. The model successfully reproduces the semidiurnal surface pressure tides; however, this may result in part from reflection of wave energy at the upper boundary. The CCM2 large-scale diurnal OLR is generally consistent with observations. The moist-convective scheme in the model is able to reproduce the diurnally varying cloudiness and precipitation patterns associated with land-sea contrasts; however, the amplitudes of CCM2 diurnal continental convective cloudiness are weaker than observations. The CCM2 boundary-layer sensible heating is consistent with a very limited set of observations, and with estimates obtained from simple models of diffusive heating. Although the CCM2 tropospheric solar radiative heating is similar in magnitude to previous estimates, there are substantial differences in the vertical structures. A definitive assessment of the validity of the CCM2 diurnal cycle is precluded by the lack of detailed observations and the limitations of our CCM2 sample. Nevertheless, the authors conclude that the global-scale components of the CCM2 diurnal heating are useful proxies for the true diurnal forcing of the tides.
    publisherAmerican Meteorological Society
    titleDiurnal Heating and Cloudiness in the NCAR Community Climate Model (CCM2)
    typeJournal Paper
    journal volume7
    journal issue6
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1994)007<0869:DHACIT>2.0.CO;2
    journal fristpage869
    journal lastpage889
    treeJournal of Climate:;1994:;volume( 007 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian