YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Organization of Extratropical Transients during El Niño

    Source: Journal of Climate:;1994:;volume( 007 ):;issue: 005::page 745
    Author:
    Hoerling, Martin P.
    ,
    Ting, Mingfang
    DOI: 10.1175/1520-0442(1994)007<0745:OOETDE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Four observed El Niño-Southern Oscillation (ENSO) events are studied to determine the mechanisms responsible for the anomalous extratropical atmospheric circulation during northern winter. A parallel analysis of a GCM's response to El Niño is performed in order to assess if similar mechanisms are operative in the model atmosphere. The observed stationary wave anomalies over the Pacific/North American (PNA) region are found to he similar during the four winters despite appreciable differences in sea surface temperatures. The anomalous transient vorticity fluxes are remarkably robust over the North Pacific during each event, with an eastward extension of the climatological storm track leading to strong cyclonic forcing near 40°N, 150°W. This forcing is in phase with the seasonal mean Aleutian trough anomaly suggesting the importance of eddy-mean flow interactions. By comparison, the intersample variability of the GCM response over the PNA region is found to exceed the observed inter-El Niño variability. This stems primarily from a large variability in the model's anomalous transients over the North Pacific. Further analysis using a linear stationary wave model reveals that the extratropical vorticity transients are the primary mechanism maintaining the stationary wave anomalies over the PNA region during all four observed ENSO winters. In the case of the GCM, the organization of transient eddies is ill defined over the North Pacific, a behavior that appears more indicative of model error than the unpredictable component of seasonal mean storm track anomalies. A physical model is proposed to explain the robustness of the tropical controlling influence of the extratropical transients in nature. A simple equatorial Pacific heat source directly forces a tropical anticyclone whose phase relative to the climatological tropical anticyclone leads to an eastward extension of the subtropical jet stream. This mechanism appears to be equally effective for a beat source located either in the central or eastern Pacific basin.
    • Download: (1.903Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Organization of Extratropical Transients during El Niño

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4180445
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHoerling, Martin P.
    contributor authorTing, Mingfang
    date accessioned2017-06-09T15:22:14Z
    date available2017-06-09T15:22:14Z
    date copyright1994/05/01
    date issued1994
    identifier issn0894-8755
    identifier otherams-4184.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4180445
    description abstractFour observed El Niño-Southern Oscillation (ENSO) events are studied to determine the mechanisms responsible for the anomalous extratropical atmospheric circulation during northern winter. A parallel analysis of a GCM's response to El Niño is performed in order to assess if similar mechanisms are operative in the model atmosphere. The observed stationary wave anomalies over the Pacific/North American (PNA) region are found to he similar during the four winters despite appreciable differences in sea surface temperatures. The anomalous transient vorticity fluxes are remarkably robust over the North Pacific during each event, with an eastward extension of the climatological storm track leading to strong cyclonic forcing near 40°N, 150°W. This forcing is in phase with the seasonal mean Aleutian trough anomaly suggesting the importance of eddy-mean flow interactions. By comparison, the intersample variability of the GCM response over the PNA region is found to exceed the observed inter-El Niño variability. This stems primarily from a large variability in the model's anomalous transients over the North Pacific. Further analysis using a linear stationary wave model reveals that the extratropical vorticity transients are the primary mechanism maintaining the stationary wave anomalies over the PNA region during all four observed ENSO winters. In the case of the GCM, the organization of transient eddies is ill defined over the North Pacific, a behavior that appears more indicative of model error than the unpredictable component of seasonal mean storm track anomalies. A physical model is proposed to explain the robustness of the tropical controlling influence of the extratropical transients in nature. A simple equatorial Pacific heat source directly forces a tropical anticyclone whose phase relative to the climatological tropical anticyclone leads to an eastward extension of the subtropical jet stream. This mechanism appears to be equally effective for a beat source located either in the central or eastern Pacific basin.
    publisherAmerican Meteorological Society
    titleOrganization of Extratropical Transients during El Niño
    typeJournal Paper
    journal volume7
    journal issue5
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1994)007<0745:OOETDE>2.0.CO;2
    journal fristpage745
    journal lastpage766
    treeJournal of Climate:;1994:;volume( 007 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian