YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Physics of Greenhouse Effect and Convection in Warm Oceans

    Source: Journal of Climate:;1994:;volume( 007 ):;issue: 005::page 715
    Author:
    Inamdar, A. K.
    ,
    Ramanathan, V.
    DOI: 10.1175/1520-0442(1994)007<0715:POGEAC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST > 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top-of-the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective regions. The positive coupling between SST and the radiative warming of the surface by the water vapor greenhouse effect is also shown to exist on interannual time scales.
    • Download: (1.392Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Physics of Greenhouse Effect and Convection in Warm Oceans

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4180423
    Collections
    • Journal of Climate

    Show full item record

    contributor authorInamdar, A. K.
    contributor authorRamanathan, V.
    date accessioned2017-06-09T15:22:12Z
    date available2017-06-09T15:22:12Z
    date copyright1994/05/01
    date issued1994
    identifier issn0894-8755
    identifier otherams-4182.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4180423
    description abstractSea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST > 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top-of-the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective regions. The positive coupling between SST and the radiative warming of the surface by the water vapor greenhouse effect is also shown to exist on interannual time scales.
    publisherAmerican Meteorological Society
    titlePhysics of Greenhouse Effect and Convection in Warm Oceans
    typeJournal Paper
    journal volume7
    journal issue5
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1994)007<0715:POGEAC>2.0.CO;2
    journal fristpage715
    journal lastpage731
    treeJournal of Climate:;1994:;volume( 007 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian