YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of ISCCP and Other Cloud Amounts

    Source: Journal of Climate:;1993:;volume( 006 ):;issue: 012::page 2394
    Author:
    Rossow, William B.
    ,
    Walker, Alison W.
    ,
    Garder, Leonid C.
    DOI: 10.1175/1520-0442(1993)006<2394:COIAOC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A new 8-year global cloud climatology has been produced by the International Satellite Cloud Climatology Project (ISCCP) that provides information every 3 h at 280-km spatial resolution covering the period from July 1983 through June 1991. If cloud detection errors and differences in area sampling are neglected, individual ISCCP cloud amounts agree with individual surface observations to within 15% rms with biases of only a few percent. When measurements of small-scale, broken clouds are isolated in the comparison, the rms differences between satellite and surface cloud amounts are about 25%, similar to the rms difference between ISCCP and Landsat determinations of cloud amount. For broken clouds, the average ISCCP cloud amounts are about 5% smaller than estimated by surface observers (difference between earth cover and sky cover), but about 5% larger than estimated from very high spatial resolution satellite observations (overestimate due to low spatial resolution offset by underestimate due to finite radiance thresholds). Detection errors, caused by errors in the ISCCP clear-sky radiances or incorrect radiance threshold magnitude are the dominant source of error in monthly average cloud amounts. The ISCCP cloud amounts appear to he too low over land by about 10%, somewhat less in summer and somewhat more in winter, and about right (maybe slightly low) over oceans. In polar regions, ISCCP cloud amounts are probably too low by about 15%?25% in summer and 5%?10% in winter. Comparison of the ISCCP climatology to three other cloud climatologies shows excellent agreement in the geographic distribution and seasonal variation of cloud amounts; there is little agreement about day/night contrasts in cloud amount. Notable results from ISCCP are that the global annual mean cloud amount is about 63%, being about 23% higher over oceans than over land, that it varies by <1% rms from month to month, and that it has varied by about 4% on a time wale ≈2?4 years. The magnitude of interannual variations of local (280-km scale) monthly mean cloud amounts is about 7%?9%. Longitudinal contrasts in cloud amount are just as large as latitudinal contrasts. The largest seasonal variation of cloud amount occurs in the tropics, being larger in summer than in winter; the seasonal variation in middle latitudes has the opposite phase. Polar regions may have little seasonal variability in cloud amount. The ISCCP results show slightly more nighttime than daytime cloud amount over oceans and more daytime than nighttime cloud amount over land.
    • Download: (1.985Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of ISCCP and Other Cloud Amounts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4179790
    Collections
    • Journal of Climate

    Show full item record

    contributor authorRossow, William B.
    contributor authorWalker, Alison W.
    contributor authorGarder, Leonid C.
    date accessioned2017-06-09T15:21:02Z
    date available2017-06-09T15:21:02Z
    date copyright1993/12/01
    date issued1993
    identifier issn0894-8755
    identifier otherams-4125.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4179790
    description abstractA new 8-year global cloud climatology has been produced by the International Satellite Cloud Climatology Project (ISCCP) that provides information every 3 h at 280-km spatial resolution covering the period from July 1983 through June 1991. If cloud detection errors and differences in area sampling are neglected, individual ISCCP cloud amounts agree with individual surface observations to within 15% rms with biases of only a few percent. When measurements of small-scale, broken clouds are isolated in the comparison, the rms differences between satellite and surface cloud amounts are about 25%, similar to the rms difference between ISCCP and Landsat determinations of cloud amount. For broken clouds, the average ISCCP cloud amounts are about 5% smaller than estimated by surface observers (difference between earth cover and sky cover), but about 5% larger than estimated from very high spatial resolution satellite observations (overestimate due to low spatial resolution offset by underestimate due to finite radiance thresholds). Detection errors, caused by errors in the ISCCP clear-sky radiances or incorrect radiance threshold magnitude are the dominant source of error in monthly average cloud amounts. The ISCCP cloud amounts appear to he too low over land by about 10%, somewhat less in summer and somewhat more in winter, and about right (maybe slightly low) over oceans. In polar regions, ISCCP cloud amounts are probably too low by about 15%?25% in summer and 5%?10% in winter. Comparison of the ISCCP climatology to three other cloud climatologies shows excellent agreement in the geographic distribution and seasonal variation of cloud amounts; there is little agreement about day/night contrasts in cloud amount. Notable results from ISCCP are that the global annual mean cloud amount is about 63%, being about 23% higher over oceans than over land, that it varies by <1% rms from month to month, and that it has varied by about 4% on a time wale ≈2?4 years. The magnitude of interannual variations of local (280-km scale) monthly mean cloud amounts is about 7%?9%. Longitudinal contrasts in cloud amount are just as large as latitudinal contrasts. The largest seasonal variation of cloud amount occurs in the tropics, being larger in summer than in winter; the seasonal variation in middle latitudes has the opposite phase. Polar regions may have little seasonal variability in cloud amount. The ISCCP results show slightly more nighttime than daytime cloud amount over oceans and more daytime than nighttime cloud amount over land.
    publisherAmerican Meteorological Society
    titleComparison of ISCCP and Other Cloud Amounts
    typeJournal Paper
    journal volume6
    journal issue12
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1993)006<2394:COIAOC>2.0.CO;2
    journal fristpage2394
    journal lastpage2418
    treeJournal of Climate:;1993:;volume( 006 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian