YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation and Predictability in a Coupled TOGA Model

    Source: Journal of Climate:;1993:;volume( 006 ):;issue: 010::page 1843
    Author:
    Gent, Peter R.
    ,
    Tribbia, Joseph J.
    DOI: 10.1175/1520-0442(1993)006<1843:SAPIAC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A model of the tropical ocean and global atmosphere is described. It consists of an aqua-planet form of version one of the NCAR Community Climate Model coupled to a primitive equation model for the upper tropical ocean in a rectangular basin. A 24-year simulation is described that has almost no climate drift, a good simulation of the mean temperature gradient across the ocean, but smaller than observed annual and interannual variability. The coupled model is analyzed to see where it occurs on the schematic bifurcation diagram of Neelin. In years 9?16 of the simulation there is a dominant oscillation with a period of two years. The spatial pattern of this oscillation shows up clearly in the first empirical orthogonal function calculated from monthly averages of sea surface temperature anomalies. A series of 19 model-twin predictability experiments were carried out with the initial perturbation being a very small change in the ocean temperature field. The correlation coefficient of monthly sea surface temperature anomalies from these model-twin experiments decreases rapidly over the first 6 months and after that, more slowly, showing that there is some predictability out to a year. The predictability times are marginally increased if only the coefficient of the first empirical orthogonal function of monthly averaged sea surface temperature anomalies or NIN03 sea surface temperature is predicted. There is some evidence to indicate that it is easier to predict the onset of a model warm event than to predict the onset of a model cold event. More detailed analysis of the first model-twin experiment shows that the initial divergence in the integrations is a change at day 6 in the incoming solar radiation due to a change in the atmospheric model clouds. The dominant early change in sea surface temperature occurs by this change in radiative heat flux. If the cloud feedback is set to zero, then the first changes are delayed to day 12 and occur in the evaporative and sensible heat fluxes and in the atmospheric wind stress. In this case the dominant early change to sea surface temperature is by advection due to the changed wind stress.
    • Download: (1.328Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation and Predictability in a Coupled TOGA Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4179401
    Collections
    • Journal of Climate

    Show full item record

    contributor authorGent, Peter R.
    contributor authorTribbia, Joseph J.
    date accessioned2017-06-09T15:20:18Z
    date available2017-06-09T15:20:18Z
    date copyright1993/10/01
    date issued1993
    identifier issn0894-8755
    identifier otherams-4090.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4179401
    description abstractA model of the tropical ocean and global atmosphere is described. It consists of an aqua-planet form of version one of the NCAR Community Climate Model coupled to a primitive equation model for the upper tropical ocean in a rectangular basin. A 24-year simulation is described that has almost no climate drift, a good simulation of the mean temperature gradient across the ocean, but smaller than observed annual and interannual variability. The coupled model is analyzed to see where it occurs on the schematic bifurcation diagram of Neelin. In years 9?16 of the simulation there is a dominant oscillation with a period of two years. The spatial pattern of this oscillation shows up clearly in the first empirical orthogonal function calculated from monthly averages of sea surface temperature anomalies. A series of 19 model-twin predictability experiments were carried out with the initial perturbation being a very small change in the ocean temperature field. The correlation coefficient of monthly sea surface temperature anomalies from these model-twin experiments decreases rapidly over the first 6 months and after that, more slowly, showing that there is some predictability out to a year. The predictability times are marginally increased if only the coefficient of the first empirical orthogonal function of monthly averaged sea surface temperature anomalies or NIN03 sea surface temperature is predicted. There is some evidence to indicate that it is easier to predict the onset of a model warm event than to predict the onset of a model cold event. More detailed analysis of the first model-twin experiment shows that the initial divergence in the integrations is a change at day 6 in the incoming solar radiation due to a change in the atmospheric model clouds. The dominant early change in sea surface temperature occurs by this change in radiative heat flux. If the cloud feedback is set to zero, then the first changes are delayed to day 12 and occur in the evaporative and sensible heat fluxes and in the atmospheric wind stress. In this case the dominant early change to sea surface temperature is by advection due to the changed wind stress.
    publisherAmerican Meteorological Society
    titleSimulation and Predictability in a Coupled TOGA Model
    typeJournal Paper
    journal volume6
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1993)006<1843:SAPIAC>2.0.CO;2
    journal fristpage1843
    journal lastpage1858
    treeJournal of Climate:;1993:;volume( 006 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian