YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Including Biospheric Responses to CO2 on the Impact of Land-Cover Change over Australia

    Source: Earth Interactions:;2004:;volume( 008 ):;issue: 005::page 1
    Author:
    Narisma, Gemma T.
    ,
    Pitman, Andrew J.
    DOI: 10.1175/1087-3562(2004)008<0001:TEOIBR>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Increasing atmospheric carbon dioxide concentration and the resulting change in temperature affect vegetation physiologically and structurally. These physiological and structural changes are biospheric feedbacks that may enhance or moderate the impacts due to human-induced land-cover change. It is therefore potentially important to include these biospheric feedbacks in experiments that explore the impact of land-cover change on climate. In this paper, it is shown that the vegetation response to higher carbon dioxide concentrations and warmer temperatures moderates the impacts of historical human-induced land-cover change in Australia. The magnitude of these biospheric feedbacks is explored, and it is shown that including them in climate simulations results in smaller land-cover change impacts on latent heat flux (by about 10?20 W m?2) and temperature (by about 0.3°C), irrespective of the direction of change caused initially by land-cover change. Further, the magnitude of the feedback on temperature is nonnegligible and can be comparable, at the regional scale, to temperature changes due to increasing atmospheric carbon dioxide concentrations. It is also shown that the biospheric feedback effects are not limited to areas of human-induced land-cover change. Higher simulated temperatures of about 0.05°?0.15°C were found in regions remote from areas of human-induced changes when these biospheric feedbacks are included. It is concluded therefore that it is necessary to take biospheric feedbacks into account in climate simulations. Excluding these feedbacks may incorrectly assess the impacts due to land-cover change.
    • Download: (1.529Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Including Biospheric Responses to CO2 on the Impact of Land-Cover Change over Australia

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4178400
    Collections
    • Earth Interactions

    Show full item record

    contributor authorNarisma, Gemma T.
    contributor authorPitman, Andrew J.
    date accessioned2017-06-09T15:18:22Z
    date available2017-06-09T15:18:22Z
    date copyright2004/05/01
    date issued2004
    identifier otherams-40.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4178400
    description abstractIncreasing atmospheric carbon dioxide concentration and the resulting change in temperature affect vegetation physiologically and structurally. These physiological and structural changes are biospheric feedbacks that may enhance or moderate the impacts due to human-induced land-cover change. It is therefore potentially important to include these biospheric feedbacks in experiments that explore the impact of land-cover change on climate. In this paper, it is shown that the vegetation response to higher carbon dioxide concentrations and warmer temperatures moderates the impacts of historical human-induced land-cover change in Australia. The magnitude of these biospheric feedbacks is explored, and it is shown that including them in climate simulations results in smaller land-cover change impacts on latent heat flux (by about 10?20 W m?2) and temperature (by about 0.3°C), irrespective of the direction of change caused initially by land-cover change. Further, the magnitude of the feedback on temperature is nonnegligible and can be comparable, at the regional scale, to temperature changes due to increasing atmospheric carbon dioxide concentrations. It is also shown that the biospheric feedback effects are not limited to areas of human-induced land-cover change. Higher simulated temperatures of about 0.05°?0.15°C were found in regions remote from areas of human-induced changes when these biospheric feedbacks are included. It is concluded therefore that it is necessary to take biospheric feedbacks into account in climate simulations. Excluding these feedbacks may incorrectly assess the impacts due to land-cover change.
    publisherAmerican Meteorological Society
    titleThe Effect of Including Biospheric Responses to CO2 on the Impact of Land-Cover Change over Australia
    typeJournal Paper
    journal volume8
    journal issue5
    journal titleEarth Interactions
    identifier doi10.1175/1087-3562(2004)008<0001:TEOIBR>2.0.CO;2
    journal fristpage1
    journal lastpage28
    treeEarth Interactions:;2004:;volume( 008 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian