YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantifying Predictability Variations in a Low-Order Occan-Atmosphere Model: A Dynamical Systems Approach

    Source: Journal of Climate:;1993:;volume( 006 ):;issue: 002::page 185
    Author:
    Nese, Jon M.
    ,
    Dutton, John A.
    DOI: 10.1175/1520-0442(1993)006<0185:QPVIAL>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A dynamical systems approach is used to quantify the predictability of weather and climatic states of a low order, moist general circulation model. The effects on predictability of incorporating a simple oceanic circulation are evaluated. The predictability and structure of the model attractors are compared using Lyapunov exponents, local divergence rates, and the correlation and Lyapunov dimensions. Lyapunov exponents quantify global, or time-averaged predictability, by measuring the mean rate of growth of small perturbations on an attractor, while local divergence rates quantify temporal variations of this error growth rate and thus measure local, or instantaneous, predictability. Activating an oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10% while decreasing the variance of the largest local divergence rate by 20% . The correlation dimension of the attractor decreases slightly when an oceanic circulation is activated, while the Lyapunov dimension decreases more significantly because it depends directly on the Lyapunov exponents. The average predictability of annually averaged states is improved by 25% when an oceanic circulation develops, and the variance of the largest local divergence rate also decreases by 25%. One-third of the yearly averaged states have local error doubling times larger than 2 years, indicating that annual averages may, at times, be predictable, even without predictable variations in external forcing. The dimensions of the attractors of the yearly averaged states are not significantly different than the dimensions of the attractors of the original model. Arguably the most important contribution of this article is the demonstration that the local divergence rates provide a concise quantification of the variations of predictability on attractors and an efficient basis for comparing their local predictability characteristics. From a practical standpoint, local divergence rates might he computed to provide a real-time estimate of local predictability to accompany an operational forecast.
    • Download: (1.583Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantifying Predictability Variations in a Low-Order Occan-Atmosphere Model: A Dynamical Systems Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4178100
    Collections
    • Journal of Climate

    Show full item record

    contributor authorNese, Jon M.
    contributor authorDutton, John A.
    date accessioned2017-06-09T15:17:47Z
    date available2017-06-09T15:17:47Z
    date copyright1993/02/01
    date issued1993
    identifier issn0894-8755
    identifier otherams-3973.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4178100
    description abstractA dynamical systems approach is used to quantify the predictability of weather and climatic states of a low order, moist general circulation model. The effects on predictability of incorporating a simple oceanic circulation are evaluated. The predictability and structure of the model attractors are compared using Lyapunov exponents, local divergence rates, and the correlation and Lyapunov dimensions. Lyapunov exponents quantify global, or time-averaged predictability, by measuring the mean rate of growth of small perturbations on an attractor, while local divergence rates quantify temporal variations of this error growth rate and thus measure local, or instantaneous, predictability. Activating an oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10% while decreasing the variance of the largest local divergence rate by 20% . The correlation dimension of the attractor decreases slightly when an oceanic circulation is activated, while the Lyapunov dimension decreases more significantly because it depends directly on the Lyapunov exponents. The average predictability of annually averaged states is improved by 25% when an oceanic circulation develops, and the variance of the largest local divergence rate also decreases by 25%. One-third of the yearly averaged states have local error doubling times larger than 2 years, indicating that annual averages may, at times, be predictable, even without predictable variations in external forcing. The dimensions of the attractors of the yearly averaged states are not significantly different than the dimensions of the attractors of the original model. Arguably the most important contribution of this article is the demonstration that the local divergence rates provide a concise quantification of the variations of predictability on attractors and an efficient basis for comparing their local predictability characteristics. From a practical standpoint, local divergence rates might he computed to provide a real-time estimate of local predictability to accompany an operational forecast.
    publisherAmerican Meteorological Society
    titleQuantifying Predictability Variations in a Low-Order Occan-Atmosphere Model: A Dynamical Systems Approach
    typeJournal Paper
    journal volume6
    journal issue2
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1993)006<0185:QPVIAL>2.0.CO;2
    journal fristpage185
    journal lastpage204
    treeJournal of Climate:;1993:;volume( 006 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian