YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Low-Level Temperature Inversions of the Eurasian Arctic and Comparisons with Soviet Drifting Station Data

    Source: Journal of Climate:;1992:;volume( 005 ):;issue: 006::page 615
    Author:
    Serreze, Mark C.
    ,
    Schnell, Russell C.
    ,
    Kahl, Jonathan D.
    DOI: 10.1175/1520-0442(1992)005<0615:LLTIOT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Seasonal and regional variations in characteristics of the Arctic low-level temperature inversion are examined using up to 12 years of twice-daily rawinsonde data from 31 inland and coastal sites of the Eurasian Arctic and a total of nearly six station years of data from three Soviet drifting stations near the North Pole. The frequency of inversions, the median inversion depth, and the temperature difference across the inversion layer increase from the Norwegian Sea eastward toward the Laptev and East Siberian seas. This effect is most pronounced in winter and autumn, and reflects proximity to oceanic influences and synoptic activity, possibly enhanced by a gradient in cloud cover. East of Novaya Zemlya during winter, inversions are found in over 95% of all soundings and tend to be surface based. For all locations, however, inversions tend to he most intense during winter due to the large deficit in surface net radiation. The strongest inversions are found over eastern Siberia, and reflect the effects of local topography. The frequency of inversions is lowest during summer, but is still >50% at all locations. Most summer inversions are elevated, and are much weaker than their winter counterparts. Data from the drifting stations reveal an inversion in every sounding from December to April. The minimum frequency of 85% occurs during August. While the median inversion depth is over 1200 m during March, it decreases to approximately 400 m during August, with median temperature differences across the inversion layer of 12.6° and 2.8°C, respectively. The median depth of the summertime mixed layer below inversions at the drifting stations ranges from 300 to 400 m. Seasonal changes in these inversion characteristics show a strong relationship with seasonal changes in cloud cover.
    • Download: (1.102Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Low-Level Temperature Inversions of the Eurasian Arctic and Comparisons with Soviet Drifting Station Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4177211
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSerreze, Mark C.
    contributor authorSchnell, Russell C.
    contributor authorKahl, Jonathan D.
    date accessioned2017-06-09T15:15:58Z
    date available2017-06-09T15:15:58Z
    date copyright1992/06/01
    date issued1992
    identifier issn0894-8755
    identifier otherams-3893.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4177211
    description abstractSeasonal and regional variations in characteristics of the Arctic low-level temperature inversion are examined using up to 12 years of twice-daily rawinsonde data from 31 inland and coastal sites of the Eurasian Arctic and a total of nearly six station years of data from three Soviet drifting stations near the North Pole. The frequency of inversions, the median inversion depth, and the temperature difference across the inversion layer increase from the Norwegian Sea eastward toward the Laptev and East Siberian seas. This effect is most pronounced in winter and autumn, and reflects proximity to oceanic influences and synoptic activity, possibly enhanced by a gradient in cloud cover. East of Novaya Zemlya during winter, inversions are found in over 95% of all soundings and tend to be surface based. For all locations, however, inversions tend to he most intense during winter due to the large deficit in surface net radiation. The strongest inversions are found over eastern Siberia, and reflect the effects of local topography. The frequency of inversions is lowest during summer, but is still >50% at all locations. Most summer inversions are elevated, and are much weaker than their winter counterparts. Data from the drifting stations reveal an inversion in every sounding from December to April. The minimum frequency of 85% occurs during August. While the median inversion depth is over 1200 m during March, it decreases to approximately 400 m during August, with median temperature differences across the inversion layer of 12.6° and 2.8°C, respectively. The median depth of the summertime mixed layer below inversions at the drifting stations ranges from 300 to 400 m. Seasonal changes in these inversion characteristics show a strong relationship with seasonal changes in cloud cover.
    publisherAmerican Meteorological Society
    titleLow-Level Temperature Inversions of the Eurasian Arctic and Comparisons with Soviet Drifting Station Data
    typeJournal Paper
    journal volume5
    journal issue6
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1992)005<0615:LLTIOT>2.0.CO;2
    journal fristpage615
    journal lastpage629
    treeJournal of Climate:;1992:;volume( 005 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian