YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nimbus-7 Global Cloud Climatology. Part II: First Year Results

    Source: Journal of Climate:;1989:;volume( 002 ):;issue: 007::page 671
    Author:
    Stowe, Larry L.
    ,
    Yeh, H. Y. Michael
    ,
    Eck, Thomas F.
    ,
    Wellemeyer, Charlie G.
    ,
    Kyle, H. Lee
    ,
    The Nimbus-7 Cloud Data Processing Team
    DOI: 10.1175/1520-0442(1989)002<0671:NGCCPI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Regional and seasonal variations in global cloud cover observed by the Nimbus-7 satellite over 1 year are analyzed by examining the 4 midseason months?April, July and October 1979 and January 1980. The Nimbus-7 data set is generated from the Temperature Humidity Infrared Radiometer (THIR) 11.5 micron radiances together with Total Ozone Mapping Spectometer (TOMS)-derived UV reflectivities, climatological atmospheric temperature lapse rates, and concurrent surface temperature and snow/ice information from the Air Force three-dimensional-nephanalysis (3DN) archive. The analysis presented here includes total cloud amount, cloud amounts at high, middle and low altitudes, cirrus and deep convective clouds and cloud and cloud-sky 11.5 micron-derived radiances. Also, noon versus midnight cloud amounts are examined and the Nimbus-7 data are compared to three previously published cloud climatologies. The Nimbus-7 bispectral algorithm gives a monthly mean global noontime cloud cover of 51%, averaged over the 4 months. When only the IR is used, this cloud cover is 49% at noontime and 56% at midnight, indicating that the Earth's cloud cover has a substantial diurnal cycle. Each hemisphere shows a cloud cover maximum in its summer and a minimum in its winter. The Southern Hemisphere shows more clouds than the Northern Hemisphere except for the month of July. The difference between the cloud-top and clear-scene radiance has maxima in the equatorial cloud belt and minima in the polar regions. Because of thew polar minima and the frequent presence of snow, Nimbus-7 cloud traction estimates are less reliable in the polar regions. In the tropics the data show more clouds at midnight than at noon. Over the tropical ocean, overcast regions show lower cloud top radiation temperatures at noon than at midnight, but over land the reverse occurs. In July, cloud amounts in the intertropical convergence zone (ITCZ) peak at about 10°N latitude with local maxima greater than 70% around the west coasts of Africa and Central America, and from India east to the dateline. Cloud-top radiances indicate that mid- and high-level clouds predominate in the ITCZ, with 5% to 15% each of cirrus and deep convective clouds, respectively. In January, the peak of the ITCZ shifts to 10°S with local cloud maxima greater than 90% over Brazil and to the north and northwest of Australia. Comparison is made with several other cloud data sets, including a look at the new preliminary International Satellite Cloud Climatology Project (ISCCP) results. There are considerable differences among the several data sets examined.
    • Download: (2.924Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nimbus-7 Global Cloud Climatology. Part II: First Year Results

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4174001
    Collections
    • Journal of Climate

    Show full item record

    contributor authorStowe, Larry L.
    contributor authorYeh, H. Y. Michael
    contributor authorEck, Thomas F.
    contributor authorWellemeyer, Charlie G.
    contributor authorKyle, H. Lee
    contributor authorThe Nimbus-7 Cloud Data Processing Team
    date accessioned2017-06-09T15:09:38Z
    date available2017-06-09T15:09:38Z
    date copyright1989/07/01
    date issued1989
    identifier issn0894-8755
    identifier otherams-3604.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4174001
    description abstractRegional and seasonal variations in global cloud cover observed by the Nimbus-7 satellite over 1 year are analyzed by examining the 4 midseason months?April, July and October 1979 and January 1980. The Nimbus-7 data set is generated from the Temperature Humidity Infrared Radiometer (THIR) 11.5 micron radiances together with Total Ozone Mapping Spectometer (TOMS)-derived UV reflectivities, climatological atmospheric temperature lapse rates, and concurrent surface temperature and snow/ice information from the Air Force three-dimensional-nephanalysis (3DN) archive. The analysis presented here includes total cloud amount, cloud amounts at high, middle and low altitudes, cirrus and deep convective clouds and cloud and cloud-sky 11.5 micron-derived radiances. Also, noon versus midnight cloud amounts are examined and the Nimbus-7 data are compared to three previously published cloud climatologies. The Nimbus-7 bispectral algorithm gives a monthly mean global noontime cloud cover of 51%, averaged over the 4 months. When only the IR is used, this cloud cover is 49% at noontime and 56% at midnight, indicating that the Earth's cloud cover has a substantial diurnal cycle. Each hemisphere shows a cloud cover maximum in its summer and a minimum in its winter. The Southern Hemisphere shows more clouds than the Northern Hemisphere except for the month of July. The difference between the cloud-top and clear-scene radiance has maxima in the equatorial cloud belt and minima in the polar regions. Because of thew polar minima and the frequent presence of snow, Nimbus-7 cloud traction estimates are less reliable in the polar regions. In the tropics the data show more clouds at midnight than at noon. Over the tropical ocean, overcast regions show lower cloud top radiation temperatures at noon than at midnight, but over land the reverse occurs. In July, cloud amounts in the intertropical convergence zone (ITCZ) peak at about 10°N latitude with local maxima greater than 70% around the west coasts of Africa and Central America, and from India east to the dateline. Cloud-top radiances indicate that mid- and high-level clouds predominate in the ITCZ, with 5% to 15% each of cirrus and deep convective clouds, respectively. In January, the peak of the ITCZ shifts to 10°S with local cloud maxima greater than 90% over Brazil and to the north and northwest of Australia. Comparison is made with several other cloud data sets, including a look at the new preliminary International Satellite Cloud Climatology Project (ISCCP) results. There are considerable differences among the several data sets examined.
    publisherAmerican Meteorological Society
    titleNimbus-7 Global Cloud Climatology. Part II: First Year Results
    typeJournal Paper
    journal volume2
    journal issue7
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(1989)002<0671:NGCCPI>2.0.CO;2
    journal fristpage671
    journal lastpage709
    treeJournal of Climate:;1989:;volume( 002 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian