YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Model Representation of Freezing and Melting Precipitation: Implications for Winter Weather Forecasting

    Source: Weather and Forecasting:;2002:;volume( 017 ):;issue: 005::page 1016
    Author:
    Lackmann, Gary M.
    ,
    Keeter, Kermit
    ,
    Lee, Laurence G.
    ,
    Ek, Michael B.
    DOI: 10.1175/1520-0434(2003)017<1016:MROFAM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: During episodes of sustained moderate or heavy precipitation in conjunction with near-freezing temperatures and weak horizontal temperature advection, the latent heat released (absorbed) by the freezing (melting) of falling precipitation may alter thermal profiles sufficiently to affect the type and amount of freezing or frozen precipitation observed at the surface. Representation of these processes by operational numerical weather prediction models is incomplete; forecaster knowledge of these model limitations can therefore be advantageous during winter weather forecasting. The Eta Model employs a sophisticated land surface model (LSM) to represent physical processes at the lower-atmospheric interface. When considering the thermodynamic effect of melting or freezing precipitation at the surface, it is shown that limitations in the current version of the Eta LSM can contribute to biases in lower-tropospheric temperature forecasts. The Eta LSM determines the precipitation type reaching the surface from the air temperature at the lowest model level; subfreezing (above freezing) temperatures are assumed to correspond to snow (rain) reaching the surface. There is currently no requirement for consistency between the LSM and the Eta grid-scale precipitation scheme. In freezing-rain situations, the lowest model air temperature is typically below freezing, and the Eta LSM will therefore determine that snow is falling. As a result, a cold bias develops that is partly caused by the neglected latent heat release accompanying the freezing of raindrops at the surface. In addition, alterations in surface characteristics caused by erroneous snowfall accumulation in the model may also contribute to temperature biases. In an analogous fashion, warm biases can develop in cases with melting snow and above-freezing air temperatures near the surface (the LSM assumes rain). An example case is presented in which model misrepresentation of freezing rain is hypothesized to have contributed to a lower-tropospheric cold bias. A simple temperature correction, based on the first law of thermodynamics, is applied to lower-tropospheric model temperature forecasts; the neglect of latent heat released by freezing rain in the model is shown to contribute substantially to a cold bias in near-surface temperature forecasts. The development of a spurious snow cover likely exacerbated the bias.
    • Download: (2.571Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Model Representation of Freezing and Melting Precipitation: Implications for Winter Weather Forecasting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4170646
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorLackmann, Gary M.
    contributor authorKeeter, Kermit
    contributor authorLee, Laurence G.
    contributor authorEk, Michael B.
    date accessioned2017-06-09T15:03:08Z
    date available2017-06-09T15:03:08Z
    date copyright2002/10/01
    date issued2002
    identifier issn0882-8156
    identifier otherams-3302.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4170646
    description abstractDuring episodes of sustained moderate or heavy precipitation in conjunction with near-freezing temperatures and weak horizontal temperature advection, the latent heat released (absorbed) by the freezing (melting) of falling precipitation may alter thermal profiles sufficiently to affect the type and amount of freezing or frozen precipitation observed at the surface. Representation of these processes by operational numerical weather prediction models is incomplete; forecaster knowledge of these model limitations can therefore be advantageous during winter weather forecasting. The Eta Model employs a sophisticated land surface model (LSM) to represent physical processes at the lower-atmospheric interface. When considering the thermodynamic effect of melting or freezing precipitation at the surface, it is shown that limitations in the current version of the Eta LSM can contribute to biases in lower-tropospheric temperature forecasts. The Eta LSM determines the precipitation type reaching the surface from the air temperature at the lowest model level; subfreezing (above freezing) temperatures are assumed to correspond to snow (rain) reaching the surface. There is currently no requirement for consistency between the LSM and the Eta grid-scale precipitation scheme. In freezing-rain situations, the lowest model air temperature is typically below freezing, and the Eta LSM will therefore determine that snow is falling. As a result, a cold bias develops that is partly caused by the neglected latent heat release accompanying the freezing of raindrops at the surface. In addition, alterations in surface characteristics caused by erroneous snowfall accumulation in the model may also contribute to temperature biases. In an analogous fashion, warm biases can develop in cases with melting snow and above-freezing air temperatures near the surface (the LSM assumes rain). An example case is presented in which model misrepresentation of freezing rain is hypothesized to have contributed to a lower-tropospheric cold bias. A simple temperature correction, based on the first law of thermodynamics, is applied to lower-tropospheric model temperature forecasts; the neglect of latent heat released by freezing rain in the model is shown to contribute substantially to a cold bias in near-surface temperature forecasts. The development of a spurious snow cover likely exacerbated the bias.
    publisherAmerican Meteorological Society
    titleModel Representation of Freezing and Melting Precipitation: Implications for Winter Weather Forecasting
    typeJournal Paper
    journal volume17
    journal issue5
    journal titleWeather and Forecasting
    identifier doi10.1175/1520-0434(2003)017<1016:MROFAM>2.0.CO;2
    journal fristpage1016
    journal lastpage1033
    treeWeather and Forecasting:;2002:;volume( 017 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian