YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Climatology of Thundersnow Events over the Contiguous United States

    Source: Weather and Forecasting:;2002:;volume( 017 ):;issue: 006::page 1290
    Author:
    Market, Patrick S.
    ,
    Halcomb, Chris E.
    ,
    Ebert, Rebecca L.
    DOI: 10.1175/1520-0434(2002)017<1290:ACOTEO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A ?climatology? (climatological description of spatial, temporal, and synoptic characteristics) of snow events with thunder is presented for the contiguous United States. Based upon 30 yr of 3-hourly reports from 204 stations in the 48 contiguous United States, 229 reports are extracted from the 3-hourly observations (consistently bearing the present-weather group in each surface observation) that featured thunder with snow only. When these reports are plotted spatially, the central United States, the intermountain west, and the Great Lakes region emerge as the preferred regions for thundersnow occurrence. A thundersnow event is then defined. Isolated thundersnow reports clearly constitute a thundersnow event. Also, multiple thundersnow reports that are not separated spatially by over 1100 km or temporally by 6 h are considered part of one event. The location reporting the first occurrence of thunder with snow in such a collection of stations then carries the representative time and location for the event. The 229 individual reports make up 191 thundersnow events. Temporal analysis of thundersnow events reveals a nationwide seasonal preference for occurrence in March but no clear diurnal preference. Most thundersnow events are typically reported at only one station and only rarely in consecutive 3-hourly observations. These results thus reinforce the notion of thundersnow as a fairly localized phenomenon of limited duration. In terms of intensity, the thundersnow events investigated in this study feature light snow about one-half of the time, with the remaining events split nearly evenly between moderate (25%) and heavy (23%) snowfall. Further analysis classifies each event according to the meso- to synoptic-scale environment in which it forms. Most events (52%) form in association with a transient midlatitude cyclone; other event types include an orographic class, events that occur with a coastal cyclone, events associated with an arctic front, lake-effect events, and those resulting from upslope flow.
    • Download: (392.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Climatology of Thundersnow Events over the Contiguous United States

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4170611
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorMarket, Patrick S.
    contributor authorHalcomb, Chris E.
    contributor authorEbert, Rebecca L.
    date accessioned2017-06-09T15:03:04Z
    date available2017-06-09T15:03:04Z
    date copyright2002/12/01
    date issued2002
    identifier issn0882-8156
    identifier otherams-3299.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4170611
    description abstractA ?climatology? (climatological description of spatial, temporal, and synoptic characteristics) of snow events with thunder is presented for the contiguous United States. Based upon 30 yr of 3-hourly reports from 204 stations in the 48 contiguous United States, 229 reports are extracted from the 3-hourly observations (consistently bearing the present-weather group in each surface observation) that featured thunder with snow only. When these reports are plotted spatially, the central United States, the intermountain west, and the Great Lakes region emerge as the preferred regions for thundersnow occurrence. A thundersnow event is then defined. Isolated thundersnow reports clearly constitute a thundersnow event. Also, multiple thundersnow reports that are not separated spatially by over 1100 km or temporally by 6 h are considered part of one event. The location reporting the first occurrence of thunder with snow in such a collection of stations then carries the representative time and location for the event. The 229 individual reports make up 191 thundersnow events. Temporal analysis of thundersnow events reveals a nationwide seasonal preference for occurrence in March but no clear diurnal preference. Most thundersnow events are typically reported at only one station and only rarely in consecutive 3-hourly observations. These results thus reinforce the notion of thundersnow as a fairly localized phenomenon of limited duration. In terms of intensity, the thundersnow events investigated in this study feature light snow about one-half of the time, with the remaining events split nearly evenly between moderate (25%) and heavy (23%) snowfall. Further analysis classifies each event according to the meso- to synoptic-scale environment in which it forms. Most events (52%) form in association with a transient midlatitude cyclone; other event types include an orographic class, events that occur with a coastal cyclone, events associated with an arctic front, lake-effect events, and those resulting from upslope flow.
    publisherAmerican Meteorological Society
    titleA Climatology of Thundersnow Events over the Contiguous United States
    typeJournal Paper
    journal volume17
    journal issue6
    journal titleWeather and Forecasting
    identifier doi10.1175/1520-0434(2002)017<1290:ACOTEO>2.0.CO;2
    journal fristpage1290
    journal lastpage1295
    treeWeather and Forecasting:;2002:;volume( 017 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian