YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Monitoring High-Temporal-Resolution Convective Stability Indices Using the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI) during the 3 May 1999 Oklahoma–Kansas Tornado Outbreak

    Source: Weather and Forecasting:;2002:;volume( 017 ):;issue: 003::page 445
    Author:
    Feltz, Wayne F.
    ,
    Mecikalski, John R.
    DOI: 10.1175/1520-0434(2002)017<0445:MHTRCS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Department of Energy Atmospheric Radiation Measurement Program has funded the development and installation of five atmospheric emitted radiance interferometer (AERI) systems around the Southern Great Plains Cloud and Radiation Test Bed located in Oklahoma and Kansas. The AERI instruments measure atmospheric emitted radiance to within 1% ambient radiance at 1 cm?1 spectral resolution from 520 to 3000 cm?1 (3?20 ?m) at 10-min temporal resolution. This high-spectral-resolution radiance information is inverted through a form of the infrared radiative transfer equation to produce temperature and water vapor profiles within the planetary boundary layer (to 3 km), effectively mapping the thermodynamic state of the lower troposphere. Taking advantage of the 10-min resolution of the AERI thermodynamic profiles, the convective destabilization during the 3 May 1999 Oklahoma?Kansas tornado outbreak is analyzed. Tropospheric changes involving the rapid (on the order of 1?2 h) dissipation of a capping temperature inversion within the planetary boundary layer, increasing boundary layer moisture, and a strong upper-level short wave lead to the systematic development of severe convection on this day. The AERI systems were able to monitor the trends in bulk atmospheric stability via diagnosed quantities such as surface-based parcel equivalent potential temperature, inversion intensity, convective available potential energy, and convective inhibition. The high temporal resolution of temperature and moisture profiling and bulk stability information is unique. Special radiosonde launches (nonsynoptic) are currently the only widely used means to determine this stability information. The array of five AERI instruments within Oklahoma and Kansas (collocated with wind profilers) offers the operational forecaster a unique and important data source for the thermodynamic evolution of the boundary layer, convective instability, and numerical weather prediction model validation.
    • Download: (1.639Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Monitoring High-Temporal-Resolution Convective Stability Indices Using the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI) during the 3 May 1999 Oklahoma–Kansas Tornado Outbreak

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4169957
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorFeltz, Wayne F.
    contributor authorMecikalski, John R.
    date accessioned2017-06-09T15:01:28Z
    date available2017-06-09T15:01:28Z
    date copyright2002/06/01
    date issued2002
    identifier issn0882-8156
    identifier otherams-3240.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4169957
    description abstractThe Department of Energy Atmospheric Radiation Measurement Program has funded the development and installation of five atmospheric emitted radiance interferometer (AERI) systems around the Southern Great Plains Cloud and Radiation Test Bed located in Oklahoma and Kansas. The AERI instruments measure atmospheric emitted radiance to within 1% ambient radiance at 1 cm?1 spectral resolution from 520 to 3000 cm?1 (3?20 ?m) at 10-min temporal resolution. This high-spectral-resolution radiance information is inverted through a form of the infrared radiative transfer equation to produce temperature and water vapor profiles within the planetary boundary layer (to 3 km), effectively mapping the thermodynamic state of the lower troposphere. Taking advantage of the 10-min resolution of the AERI thermodynamic profiles, the convective destabilization during the 3 May 1999 Oklahoma?Kansas tornado outbreak is analyzed. Tropospheric changes involving the rapid (on the order of 1?2 h) dissipation of a capping temperature inversion within the planetary boundary layer, increasing boundary layer moisture, and a strong upper-level short wave lead to the systematic development of severe convection on this day. The AERI systems were able to monitor the trends in bulk atmospheric stability via diagnosed quantities such as surface-based parcel equivalent potential temperature, inversion intensity, convective available potential energy, and convective inhibition. The high temporal resolution of temperature and moisture profiling and bulk stability information is unique. Special radiosonde launches (nonsynoptic) are currently the only widely used means to determine this stability information. The array of five AERI instruments within Oklahoma and Kansas (collocated with wind profilers) offers the operational forecaster a unique and important data source for the thermodynamic evolution of the boundary layer, convective instability, and numerical weather prediction model validation.
    publisherAmerican Meteorological Society
    titleMonitoring High-Temporal-Resolution Convective Stability Indices Using the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI) during the 3 May 1999 Oklahoma–Kansas Tornado Outbreak
    typeJournal Paper
    journal volume17
    journal issue3
    journal titleWeather and Forecasting
    identifier doi10.1175/1520-0434(2002)017<0445:MHTRCS>2.0.CO;2
    journal fristpage445
    journal lastpage455
    treeWeather and Forecasting:;2002:;volume( 017 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian