YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Canadian Updateable Model Output Statistics (UMOS) System: Design and Development Tests

    Source: Weather and Forecasting:;2002:;volume( 017 ):;issue: 002::page 206
    Author:
    Wilson, Laurence J.
    ,
    Vallée, Marcel
    DOI: 10.1175/1520-0434(2002)017<0206:TCUMOS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The use of model output statistics (MOS) in operational weather element prediction has been hindered since the mid-1980s by frequent changes in the operational numerical weather prediction models that supply the predictors for the weather element forecasts. Once the model changes, a new archive of model output must be collected for a long enough period that statistically stable equations can be developed. This paper describes a new statistical interpretation system that addresses this problem and permits the rapid adaptation of the statistical forecast to changes in the formulation of the driving model. In comparison with traditional MOS development, the new system incorporates two main features. First, the data are stored in the form of the cross-products matrices used in multivariate statistical techniques rather than as raw observations and forecasts. It is these matrices that are updated regularly with new output from the model. Second, equations are developed by a weighted blending of the new and old model data, with weights chosen to emphasize the new model data while including enough old model data in the development to ensure stable equations and a smooth transition to dependency on the new model. This paper describes the design of the new system and shows tests of the equation development method following a major change of the Canadian operational model. Tests were carried out for surface temperature, probability of precipitation, and wind direction and speed for about 200 Canadian stations that have a reliable observation record. For all three elements, the coefficients and predictors selected remained remarkably stable through the transition from dependence on old model data to new model data. Although some degradation of the goodness of fit was noticed during the period when new and old model forecasts were blended, especially for wind, these effects were minor, which means that useful MOS equations could be obtained relatively soon after a change of model. Results from a comparison of forecasts from the new system with operational perfect prog forecasts and direct model output forecasts are the subject of a second paper.
    • Download: (560.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Canadian Updateable Model Output Statistics (UMOS) System: Design and Development Tests

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4169790
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorWilson, Laurence J.
    contributor authorVallée, Marcel
    date accessioned2017-06-09T15:01:09Z
    date available2017-06-09T15:01:09Z
    date copyright2002/04/01
    date issued2002
    identifier issn0882-8156
    identifier otherams-3225.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4169790
    description abstractThe use of model output statistics (MOS) in operational weather element prediction has been hindered since the mid-1980s by frequent changes in the operational numerical weather prediction models that supply the predictors for the weather element forecasts. Once the model changes, a new archive of model output must be collected for a long enough period that statistically stable equations can be developed. This paper describes a new statistical interpretation system that addresses this problem and permits the rapid adaptation of the statistical forecast to changes in the formulation of the driving model. In comparison with traditional MOS development, the new system incorporates two main features. First, the data are stored in the form of the cross-products matrices used in multivariate statistical techniques rather than as raw observations and forecasts. It is these matrices that are updated regularly with new output from the model. Second, equations are developed by a weighted blending of the new and old model data, with weights chosen to emphasize the new model data while including enough old model data in the development to ensure stable equations and a smooth transition to dependency on the new model. This paper describes the design of the new system and shows tests of the equation development method following a major change of the Canadian operational model. Tests were carried out for surface temperature, probability of precipitation, and wind direction and speed for about 200 Canadian stations that have a reliable observation record. For all three elements, the coefficients and predictors selected remained remarkably stable through the transition from dependence on old model data to new model data. Although some degradation of the goodness of fit was noticed during the period when new and old model forecasts were blended, especially for wind, these effects were minor, which means that useful MOS equations could be obtained relatively soon after a change of model. Results from a comparison of forecasts from the new system with operational perfect prog forecasts and direct model output forecasts are the subject of a second paper.
    publisherAmerican Meteorological Society
    titleThe Canadian Updateable Model Output Statistics (UMOS) System: Design and Development Tests
    typeJournal Paper
    journal volume17
    journal issue2
    journal titleWeather and Forecasting
    identifier doi10.1175/1520-0434(2002)017<0206:TCUMOS>2.0.CO;2
    journal fristpage206
    journal lastpage222
    treeWeather and Forecasting:;2002:;volume( 017 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian