YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Initiation of Moist Convection at the Dryline: Forecasting Issues from aCase Study Perspective

    Source: Weather and Forecasting:;1998:;volume( 013 ):;issue: 004::page 1106
    Author:
    Ziegler, Conrad L.
    ,
    Rasmussen, Erik N.
    DOI: 10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The processes that force the initiation of deep convection along the dryline are inferred from special mesoscale observations obtained during the 1991 Central Oklahoma Profiler Studies project, the Verification of the Origins of Rotation in Tornadoes Experiment 1994 (VORTEX-94), and the VORTEX-95 field projects. Observations from aircraft, mobile CLASS soundings, and mobile mesonets define the fields of airflow, absolute humidity, and virtual temperature in the boundary layer across the dryline on the 15 May 1991, 7 June 1994, and 6 May 1995 case days. Film and video cloud images obtained by time-lapse cameras on the NOAA P-3 are used to reconstruct the mesoscale distribution of cumulus clouds by photogrammetric methods, permitting inferences concerning the environmental conditions accompanying cloud formation or suppression. The results of the present study confirm the classical notion that the dryline is a favored zone for cumulus cloud formation. The combined cloud distributions for the three cases are approximately Gaussian, suggesting a peak expected cloud frequency 15 km east of the dryline. Deep mesoscale moisture convergence is inferred in cloudy regions, with either subsidence or a lack of deep convergence in cloud-free regions. The results document the modulating effect of vertical wind shear and elevated dry layers in combination with the depth and strength of mesoscale updrafts on convective initiation, supporting the notion that moist boundary layer air parcels must be lifted to their lifted condensation level and level of free convection prior to leaving the mesoscale updraft to form deep convection. By relaxing the overly restrictive assumptions of parcel theory, it is suggested that a modification of proximity soundings to account for mesoscale lift and westerly wind shear effects can improve the diagnosis of the mesoscale dryline environment and the prediction of convective initiation at the dryline. Conversely, proximity environmental soundings, taken by themselves with consideration of CAPE and convective inhibition values according to parcel theory but neglecting vertical boundary layer circulations, are found to have less prognostic value than is conventionally assumed.
    • Download: (1.136Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Initiation of Moist Convection at the Dryline: Forecasting Issues from aCase Study Perspective

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4167457
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorZiegler, Conrad L.
    contributor authorRasmussen, Erik N.
    date accessioned2017-06-09T14:56:40Z
    date available2017-06-09T14:56:40Z
    date copyright1998/12/01
    date issued1998
    identifier issn0882-8156
    identifier otherams-3015.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4167457
    description abstractThe processes that force the initiation of deep convection along the dryline are inferred from special mesoscale observations obtained during the 1991 Central Oklahoma Profiler Studies project, the Verification of the Origins of Rotation in Tornadoes Experiment 1994 (VORTEX-94), and the VORTEX-95 field projects. Observations from aircraft, mobile CLASS soundings, and mobile mesonets define the fields of airflow, absolute humidity, and virtual temperature in the boundary layer across the dryline on the 15 May 1991, 7 June 1994, and 6 May 1995 case days. Film and video cloud images obtained by time-lapse cameras on the NOAA P-3 are used to reconstruct the mesoscale distribution of cumulus clouds by photogrammetric methods, permitting inferences concerning the environmental conditions accompanying cloud formation or suppression. The results of the present study confirm the classical notion that the dryline is a favored zone for cumulus cloud formation. The combined cloud distributions for the three cases are approximately Gaussian, suggesting a peak expected cloud frequency 15 km east of the dryline. Deep mesoscale moisture convergence is inferred in cloudy regions, with either subsidence or a lack of deep convergence in cloud-free regions. The results document the modulating effect of vertical wind shear and elevated dry layers in combination with the depth and strength of mesoscale updrafts on convective initiation, supporting the notion that moist boundary layer air parcels must be lifted to their lifted condensation level and level of free convection prior to leaving the mesoscale updraft to form deep convection. By relaxing the overly restrictive assumptions of parcel theory, it is suggested that a modification of proximity soundings to account for mesoscale lift and westerly wind shear effects can improve the diagnosis of the mesoscale dryline environment and the prediction of convective initiation at the dryline. Conversely, proximity environmental soundings, taken by themselves with consideration of CAPE and convective inhibition values according to parcel theory but neglecting vertical boundary layer circulations, are found to have less prognostic value than is conventionally assumed.
    publisherAmerican Meteorological Society
    titleThe Initiation of Moist Convection at the Dryline: Forecasting Issues from aCase Study Perspective
    typeJournal Paper
    journal volume13
    journal issue4
    journal titleWeather and Forecasting
    identifier doi10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2
    journal fristpage1106
    journal lastpage1131
    treeWeather and Forecasting:;1998:;volume( 013 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian