YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Dense Current Flowing down a Sloping Bottom in a Rotating Fluid

    Source: Journal of Physical Oceanography:;2004:;Volume( 034 ):;issue: 001::page 188
    Author:
    Cenedese, C.
    ,
    Whitehead, J. A.
    ,
    Ascarelli, T. A.
    ,
    Ohiwa, M.
    DOI: 10.1175/1520-0485(2004)034<0188:ADCFDA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A density-driven current was generated in the laboratory by releasing dense fluid over a sloping bottom in a rotating freshwater system. The behavior of the dense fluid descending the slope has been investigated by systematically varying four parameters: the rotation rate, the bottom slope, the flow rate of the dense fluid, and the density of the dense fluid. Over a wide range of parameter values, the following three flow types were found: a laminar regime in which the dense current had a constant thickness behind the head, a wave regime in which wavelike disturbances appeared on the interface between the dense and fresh fluids, and an eddy regime in which periodic formation of cyclonic eddies in the fresh overlying ambient fluid was observed. All of the experiments revealed that increasing the slope angle and the density of the bottom fluid allowed the flow to evolve from the laminar to the wave regime. Furthermore, increasing rotation rate induced the formation of eddies. A theoretical solution for the downslope velocity field has been found using a steady-state model. Comparison between the theoretical and experimental downslope velocities gave good agreement. The wave regime was observed to occur for values of the Froude number greater than 1. The laminar regime was found for values of the Froude number less than 1. The amount of mixing between the dense and the ambient fluids was measured. Mixing increased significantly when passing from the laminar to the wave regime, that is, with increasing Froude number. Good agreement between the amount of mixing observed in the ocean and in the laboratory experiments is encouraging and makes the waves observed in the present experiments a possible candidate for the mixing observed during oceanic dense current overflows.
    • Download: (726.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Dense Current Flowing down a Sloping Bottom in a Rotating Fluid

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4167294
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorCenedese, C.
    contributor authorWhitehead, J. A.
    contributor authorAscarelli, T. A.
    contributor authorOhiwa, M.
    date accessioned2017-06-09T14:56:11Z
    date available2017-06-09T14:56:11Z
    date copyright2004/01/01
    date issued2004
    identifier issn0022-3670
    identifier otherams-30002.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4167294
    description abstractA density-driven current was generated in the laboratory by releasing dense fluid over a sloping bottom in a rotating freshwater system. The behavior of the dense fluid descending the slope has been investigated by systematically varying four parameters: the rotation rate, the bottom slope, the flow rate of the dense fluid, and the density of the dense fluid. Over a wide range of parameter values, the following three flow types were found: a laminar regime in which the dense current had a constant thickness behind the head, a wave regime in which wavelike disturbances appeared on the interface between the dense and fresh fluids, and an eddy regime in which periodic formation of cyclonic eddies in the fresh overlying ambient fluid was observed. All of the experiments revealed that increasing the slope angle and the density of the bottom fluid allowed the flow to evolve from the laminar to the wave regime. Furthermore, increasing rotation rate induced the formation of eddies. A theoretical solution for the downslope velocity field has been found using a steady-state model. Comparison between the theoretical and experimental downslope velocities gave good agreement. The wave regime was observed to occur for values of the Froude number greater than 1. The laminar regime was found for values of the Froude number less than 1. The amount of mixing between the dense and the ambient fluids was measured. Mixing increased significantly when passing from the laminar to the wave regime, that is, with increasing Froude number. Good agreement between the amount of mixing observed in the ocean and in the laboratory experiments is encouraging and makes the waves observed in the present experiments a possible candidate for the mixing observed during oceanic dense current overflows.
    publisherAmerican Meteorological Society
    titleA Dense Current Flowing down a Sloping Bottom in a Rotating Fluid
    typeJournal Paper
    journal volume34
    journal issue1
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2004)034<0188:ADCFDA>2.0.CO;2
    journal fristpage188
    journal lastpage203
    treeJournal of Physical Oceanography:;2004:;Volume( 034 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian